Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электрооборудование электрических станций и под....doc
Скачиваний:
128
Добавлен:
12.11.2018
Размер:
25.92 Mб
Скачать

Контрольные вопросы

1. Назначение разъединителей. Какие операции разрешается производить

разъединителями?

2. По каким признакам классифицируются разъединители?

Опишите устройство и области применения разъединителя типа РВ-6-10.

3. Объясните устройство разъединителя типа РВЗ - 6-10.

4. Расскажите об устройстве и принципе действия разъединителя типа РВК-20.

5. Расскажите об устройстве и принципе действия разъединителя типа РВН-500.

6. Объясните назначение короткозамыкателей и отделителей.

7. Расскажите об устройстве и принципе действия короткозамыкателя

типа КЗ-35.

8. Расскажите об устройстве и принципе действия короткозамыкателя

типа КЭ-110.

9. Расскажите об устройстве и принципе действия отделителя типа ОД-35.

10. Расскажите об устройстве и принципе действия отделителя типа ОЭ-110.

11. Опишите схему автоматики между короткозамыкателем и отделителем.

Тема № 5 измерительные трансформаторы тока и напряжения

ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ ТОКА

ОСНОВНЫЕ ПОНЯТИЯ

Трансформаторы тока служат для преобразования тока любого значения и напряжения в ток, удобный для измерения стандартными приборами (5 А), питания токовых обмоток реле, отключающих устройств, а также для изолирования приборов и обслуживающего персонала от высокого напряжения.

Трансформатор тока имеет замкнутый магнитопровод 2 и две обмотки − первичную 1 и вторичную 3 (рис. 5.1). Первичная обмотка вклю­чается последовательно в цепь измеряемого тока I1, ко вторичной обмотке присоединяются измерительные приборы, обтекаемые током I2.

Рис. 5.1. Схема включения трансформатора тока:

1 – первичная обмотка; 2 – магнитопровод; 3 – вторичная обмотка

Трансформатор тока характеризуется номинальным коэффициентом трансформации

К1= I1ном / I2ном.,

где I1ном и I2ном.− номинальные значения первичного и вторичного тока соответственно.

Значения номинального вторичного тока приняты равными 5 и 1 А. Коэффициент трансформации трансформаторов тока не является стро­го постоянной величиной и может отличаться от номинального значения вследствие погрешности, обусловленной наличием тока намагничивания.

Токовая погрешность определяется по выражению

.

Погрешность трансформатора тока зависит от его конструктивных осо­бенностей: сечения магнитопровода, магнитной проницаемости материала магнитопровода, средней длины магнитного пути, значения I1w1. В зависи­мости от предъявляемых требований выпускаются трансформаторы тока с классами точности 0,2; 0,5; 1; 3; 10 (Д, Р, З).

Указанные цифры представляют со­бой токовую погрешность в процентах номинального тока при нагрузке первичной обмотки током 100 − 120% для первых трех классов и 50 − 120% для двух последних. Для трансформаторов тока классов точности 0,2; 0,5 и 1 нормируется также угловая погрешность.

Погрешность трансформатора тока зависит от вторичной нагрузки (со­противления приборов, проводов, контактов) и от кратности первичного тока по отношению к номинальному. Увеличение нагрузки и кратности тока приводит к увеличению погрешности.

При первичных токах, значительно меньших номинального, погреш­ность трансформатора тока также возрастает.

На рис. 5.2 представлены схемы соединений вторичных обмоток трансформаторов тока.

а)

б)

в)

Рис. 5.2. Схемы соединений вторичных обмоток трансформаторов тока:

а – звездой; б – треугольником; в – на сумму трех фаз

Трансформаторы тока класса 0,2 применяются для присоединения точных лабораторных приборов, класса 0,5 − для присоединения счетчиков денежного расчета, класса 1 − для всех технических измерительных прибо­ров, классов 3 и 10 − для релейной защиты.

Кроме рассмотренных классов выпускаются также трансформаторы то­ка со вторичными обмотками типов Д (для дифференциальной защиты), 3 (для земляной защиты), Р (для прочих релейных защит).

Токовые цепи измерительных приборов и реле имеют малое сопротив­ление, поэтому трансформатор тока нормально работает в режиме, близ­ком к режиму короткого замыкания. Если разомкнуть вторичную обмотку, магнитный поток в магнитопроводе резко возрастет, так как он будет определяться только МДС первичной обмотки. В этом режиме магнитопровод может нагреться до недопустимой температуры, а на вторичной разомкнутой обмотке по­явится высокое напряжение, достигающее в некоторых случаях десятков киловольт.

Из-за указанных явлений не разрешается размыкать вторичную обмот­ку трансформатора тока при протекании тока в первичной обмотке. При необходимости замены измерительного прибора или реле предварительно замыкается накоротко вторичная обмотка трансформатора тока (или шун­тируется обмотка реле, прибора).

При монтаже распределительных устройств напряжением 6 – 10 кВ применяют трансформаторы тока с литой и фарфоровой изоляцией, а при напряжении до 1000 В – с литой, хлопчатобумажной и фарфоровой изоляцией.

Измерительные трансформаторы тока изготовляют с номинальным вторичным током 1 и 5 А и первичным от 5 до 5000 А. Они допускают длительную токовую перегрузку, равную 110 % номинальной при условии, что превышение допустимой температуры подводящих шин не более 45 °С.

КОНСТРУКЦИИ ТРАНСФОРМАТОРОВ ТОКА

Трансформаторы тока для внутренней установки до 35 кВ имеют ли­тую эпоксидную изоляцию. По типу первичной обмотки различают катушечные (на напряжение до 3 кВ включительно), одновитковые и многовитковые трансформаторы.

Трансформаторы тока для электроустановок напряжением до 1000 В показаны на рис. 5.3, а, б, в (катушечный, шинный ТШ-0,5 и шинный с литой изоляцией ТШЛ-0,5). В шинных трансформато­рах тока в качестве первичной обмотки используют шину, пропус­каемую через окно 5 сердечника трансформатора тока, на кото­рый намотана вторичная обмотка.

Рис. 5.3. Трансформаторы тока на напряжение до 1000 В:

а – катушечный; б, в – шинные ТШ-0,5 и ТШЛ-0,5

1 – каркас; 2, 4 – зажимы вторичной и первичной обмоток;

3 – защитный кожух; 5 – окно

Проходные трансформаторы тока для внутренней установки на напряжение 10 кВ выполняют многовитковыми, одновитковыми и шинными с фарфоровой и пластмассовой (литой) изоляцией (рис.5.4,а-в).

Рис. 5.4. Трансформаторы тока на напряжение 10 кВ с литой изоляцией:

а – многовитковый ТПЛ-10; б – одновитковый ТПОЛ – 10; в – шинный ТПШЛ-10

1,2 – зажимы первичной и вторичной обмоток; 3 – литая изоляция;

4 – установочный угольник; 5 – сердечник

На рис. 5.5, а схематично показано выполнение магнитопроводов и об­моток, а на рис.5.5, б внешний вид трансформатора тока ТПОЛ-20 (проходной, одновитковый, с литой изоляцией на 20 кВ). В этих трансфор­маторах токоведущий стержень, проходящий через «окна» двух магнито­проводов, является одним витком первичной обмотки. Одновитковые трансформаторы тока изготовляются на первичные токи 600 А и более; при меньших токах МДС первичной обмотки I1w1 окажется недостаточ­ной для работы с необходимым классом точности. Трансформатор ТПОЛ-20 имеет два магнитопровода, на каждый из которых намотана своя вторичная обмотка. Классы точности этих трансформаторов тока 0,5; 3 и 10 Р. Магнитопроводы вместе с обмотками заливаются компаундом на основе эпоксидной смолы, который после затвердения образует монолитную массу. Такие трансформаторы тока имеют значительно меньшие раз­меры, чем трансформаторы с фарфоровой изоляцией, выпускавшиеся ра­нее, и обладают высокой электродинамической стойкостью.

а) принципиальное расположение магнитопроводов с обмотками

б) конструкция

Рис. 5.5. Трансформатор тока ТПОЛ-20:

1 – вывод первичной обмотки; 2 − эпоксидная изоляция;