
- •Fiber optics
- •Fiber optics
- •Erbium-doped fiber amplifiers
- •Nonlinearity
- •Fiber lasers
- •Figure 3
- •Doing it all with fiber?
- •The global electric circuit
- •III. Vocabulary and word study
- •The Global Electric Circuit
- •Generators and sources
- •Monitoring the global electric circuit
- •Challenge to established views
- •Energy from inertial fusion
- •III. Vocabulary and Word Study
- •Components
- •Solid-state lasers
- •Light-ion accelerators
- •Heavy-ion accelerators
- •Reactors
- •Cascade.
- •Power plant operating parameters
- •Target factory
- •Environmental, safety and health issue
- •Is getting a lot more precise
- •Optical Frequency Measurement Is Getting a Lot More Precise Abridged
- •The problem
- •The experiment
- •Testing qed
- •Spreading the technique
- •Ancient stardust in the laboratory
- •III. Vocabulary and word study
- •Searching for Stardust
- •Stellar parents: how many and what kind?
- •Forming stellar grains
- •Probing the early Solar System
- •A continuous model of computation
- •2. Write down the physical terms, known to you, in Russian.
- •A continuous model of computation
- •Two models of computation
- •Turing-machine model—pros and cons
- •Real-number model—pros and cons
- •Information-based complexit
- •The curse of dimensionality
- •The information level
- •Monte Carlo
- •Path integrals
- •III.Vocabulary and Word Study
- •IV. Reading for General Understannding
- •III. Vocabulary and Word Study
- •Planar imaging with X rays
- •Sectional imaging
- •Digital imaging
- •Treatment planning
- •Tomographic therapy
- •The cosmic rosetta stone
- •Write down the physical terms, known to you, in Russian.
- •III. Vocabulary and Word Study.
- •Abridged
- •Anisotropy in the cosmic background
- •Box 1. Big Bang Basics
- •The scientific harvest
- •Box 2. The Physics of cmb Anisotropy
- •The Scientific Harvest
Energy from inertial fusion
I. First Reading of the text “Energy from Inertial Fusion”.
1. Read paragraphs 1-2 quickly and try to understand what they are about and what information in the field of fusion is new to you.
2. Write down the technical terms, known to you in Russian.
3. Find in the paragraphs sentences about the concepts and methods described in the text.
II. Scanning Reading
-
Read the texts “Components”, “Solid-State Lasers”, “Light-Ion Accelerators”, “Heavy-Ion Acceletrators”.
-
Find:
a) in the text “Components” sentence explaining the term “the fusion cycle gain”
b) in the text “Solid-State Lasers” the sentence on the advantage of Nd: lasers.
c) in the text “Krypton Fluoride Gas Lasers” the sentence explaining why the use of Krypton fluoride gas lasers is complicated.
d) in the text “Light-Ion Accelerators” the sentence that explains the principle of operation of the accelerators above.
e) in the text “Heavy-Ion Accelerators” the sentence on different approaches to heavy-ion drivers.
3. Find in the text “Heavy-Ion Accelerators” the sentences on the acceleration of multiple beams.
4. Pick out the technical terms from the texts the ones аyou do not know. Refer to a dictionary if necessary.
III. Vocabulary and Word Study
A Vocabulary
1. driver n запускающее устройство, возбудитель
2. fusion n синтез
3. promise n перспектива
4. challenge n сложная проблема, задача
5. Nd glass laser лазер на стекле с неодимом
6. to envision v представлять себе
7. to imply v значить, подразумевать, предполагать
8. pulse rate частота повторения импульсов
9. yield of taget эффективность мишени
10.fusion cycle gain коэффициент усиления по циклу
11.cascade n зд. просыпание
12.inertial confinement инерционное удержание (плазмы)
13.power plant энергоустановка
14.driver power мощность запускающего устройства
15.irradience n облучённость, поверхностная плотность потока излучения
16.diode pump laser лазер с накачкой светодиодами
17.flashlamp pumped laser лазер с накачкой лампой-вспышкой
18.solid-state laser твердотельный лазер
19.confinement n удержание, ограничение
20.laser diode лазерный диод
21.to lase v подвергать воздействию лазера
22.peak adj максимальный
23.plausibly adv правдоподобно
24.debris n осколки, отходы
25. interface n устройство сопряжения
26. coupling n связь, взаимодействие
27. seed pulse импульс кристалла-затравки
28. pulse technique импульсный метод
pulse power действующее значение мощности импульса
29. ignition n зажигание
30.burn прожигание, отжиг
31. wattage n потребляемая мощность
32. diode array диодная матрица
33. wall plug штепсельная розетка
34. excimer laser эксимерный лазер
35.gap n разрыв, цель; искровой промежуток; запрещённая энергетическая зона
36. breeding размножение
37. blanket n зона воспроизводства
38. breeder n реактор-размножитель
39. grazing incidence скользящее падение
40. dump опрокидыватель
41. fluency n гладкость, плавность
42. angle of repose угол естественного откоса
43. waist n сужение
44. drop tower колонна понижения
45.interlock n внутреннее крепление
46. redundancy n избыточность
47. tendon n предварительно напряжённая арматура
48. to conceive полагать, замышлять;
49. fission n деление
50. space charge implosion пространственный заряд; взрыв, направленный внутрь
Notes to the text
inertial confinement fusion – ядерный синтез с инерционным удержанием плазмы
ceramic granule cascade - просыпание керамических гранул
a self-renewing liquid first wall – самовозобновляющаяся первая стена из жидкости
gravity fed solid Li2 O ceramic granules – твёрдые керамические гранулы из
Li2 O, подаваемые под воздействием силы тяжести
low-activation silicon carbide tiles –теплозащитные плитки из карбида кремния с низкой активацией
high-gain fusion target implosion – имплозия мишени при синтезе с высоким коэффициентом усиления
light-ion-fusion power plant designs – проекты силовой установки для синтеза лёгкими ионами
space-charge force - сила пространственного заряда
fusion cycle gain - коэффициент усиления по циклу расплава
net energy - энергия, которой можно пользоваться
В Word Study
1. Find the related verbs in the texts “Components”, “Solid-State Lasers”, “Krypton Fluoride Gas Lasers”, “Light-Ion Accelerators”, “Heavy Ion Accelerators”.
delivery performance production
reduction requirement operation
compression emission achievement
storage demonstration extraction
2. Find the related nouns in the texts abovementioned.
to reduce to induce to drive
to react to limit to fuse
to confine to react to perform
to emit to generate to propagate
3. Find the related adjectives
proportion magnet nucleus
linearization inertia gas
policy satisfaction nation
ENERGY FROM INERTIAL FUSION
Abridged
Progress in drivers, reactors and targets has made smaller, more flexible power plants feasible and has reduced the potential costs of developing them.
William J. Hogan, Roger Dangeiter and Gerald L. Kulcinski
1 Fusion is potentially a safe, clean energy source not limited by political boundaries. Magnetic and inertial fusion share this promise, but there are differences between them. An inertial fusion power plant is based on different physics and technology from a magnetic fusion power plant and therefore presents somewhat different benefits and challenges. The facilities required to demonstrate inertial fusion power are potentially much smaller. In this article we describe concepts for such a power plant, its beneficial features and a low-cost reactor test facility for developing practical fusion power.
2 Some of the challenges facing inertial confinement fusion as opposed to magnetic fusion include inertial confinement's different ignition and burn method, its pulsed nature, the high rate at which targets must be manufactured and put in place, and the technically difficult driver-reactor interface. Inertial fusion power plants must be designed to handle these technical problems in a satisfactory manner.
|
The Cascade reactor. A flowing bed of ceramic granules, held against the wall by the rotating chamber, transforms thermonuclear energy into heat, breeds tritium and protects the structure from the effects of the thermonuclear microexplosions. The granules are fed into the ends of the reactor and slide along the wall to the waist, where they exit and are thrown into heat exchangers through tubes (not shown). The reactor wall consists of silicon carbide tiles held in compression with composite tendons. |
Figure 1
|
|
3 Figure 1 shows one design concept, known as Cascade. Here ceramic granules cascade along the walls of the reaction chamber to collect the fusion energy, breed tritium and protect the structure from the short bursts of fusion energy.