Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
хрестоматия 6 Сопелева 1.doc
Скачиваний:
1
Добавлен:
11.11.2018
Размер:
6.06 Mб
Скачать

Energy from inertial fusion

I. First Reading of the text “Energy from Inertial Fusion”.

1. Read paragraphs 1-2 quickly and try to understand what they are about and what information in the field of fusion is new to you.

2. Write down the technical terms, known to you in Russian.

3. Find in the paragraphs sentences about the concepts and methods described in the text.

II. Scanning Reading

  1. Read the texts “Components”, “Solid-State Lasers”, “Light-Ion Accelerators”, “Heavy-Ion Acceletrators”.

  2. Find:

a) in the text “Components” sentence explaining the term “the fusion cycle gain”

b) in the text “Solid-State Lasers” the sentence on the advantage of Nd: lasers.

c) in the text “Krypton Fluoride Gas Lasers” the sentence explaining why the use of Krypton fluoride gas lasers is complicated.

d) in the text “Light-Ion Accelerators” the sentence that explains the principle of operation of the accelerators above.

e) in the text “Heavy-Ion Accelerators” the sentence on different approaches to heavy-ion drivers.

3. Find in the text “Heavy-Ion Accelerators” the sentences on the acceleration of multiple beams.

4. Pick out the technical terms from the texts the ones аyou do not know. Refer to a dictionary if necessary.

III. Vocabulary and Word Study

A Vocabulary

1. driver n запускающее устройство, возбудитель

2. fusion n синтез

3. promise n перспектива

4. challenge n сложная проблема, задача

5. Nd glass laser лазер на стекле с неодимом

6. to envision v представлять себе

7. to imply v значить, подразумевать, предполагать

8. pulse rate частота повторения импульсов

9. yield of taget эффективность мишени

10.fusion cycle gain коэффициент усиления по циклу

11.cascade n зд. просыпание

12.inertial confinement инерционное удержание (плазмы)

13.power plant энергоустановка

14.driver power мощность запускающего устройства

15.irradience n облучённость, поверхностная плотность потока излучения

16.diode pump laser лазер с накачкой светодиодами

17.flashlamp pumped laser лазер с накачкой лампой-вспышкой

18.solid-state laser твердотельный лазер

19.confinement n удержание, ограничение

20.laser diode лазерный диод

21.to lase v подвергать воздействию лазера

22.peak adj максимальный

23.plausibly adv правдоподобно

24.debris n осколки, отходы

25. interface n устройство сопряжения

26. coupling n связь, взаимодействие

27. seed pulse импульс кристалла-затравки

28. pulse technique импульсный метод

pulse power действующее значение мощности импульса

29. ignition n зажигание

30.burn прожигание, отжиг

31. wattage n потребляемая мощность

32. diode array диодная матрица

33. wall plug штепсельная розетка

34. excimer laser эксимерный лазер

35.gap n разрыв, цель; искровой промежуток; запрещённая энергетическая зона

36. breeding размножение

37. blanket n зона воспроизводства

38. breeder n реактор-размножитель

39. grazing incidence скользящее падение

40. dump опрокидыватель

41. fluency n гладкость, плавность

42. angle of repose угол естественного откоса

43. waist n сужение

44. drop tower колонна понижения

45.interlock n внутреннее крепление

46. redundancy n избыточность

47. tendon n предварительно напряжённая арматура

48. to conceive полагать, замышлять;

49. fission n деление

50. space charge implosion пространственный заряд; взрыв, направленный внутрь

Notes to the text

inertial confinement fusion – ядерный синтез с инерционным удержанием плазмы

ceramic granule cascade - просыпание керамических гранул

a self-renewing liquid first wall – самовозобновляющаяся первая стена из жидкости

gravity fed solid Li2 O ceramic granules – твёрдые керамические гранулы из

Li2 O, подаваемые под воздействием силы тяжести

low-activation silicon carbide tiles –теплозащитные плитки из карбида кремния с низкой активацией

high-gain fusion target implosion – имплозия мишени при синтезе с высоким коэффициентом усиления

light-ion-fusion power plant designs – проекты силовой установки для синтеза лёгкими ионами

space-charge force - сила пространственного заряда

fusion cycle gain - коэффициент усиления по циклу расплава

net energy - энергия, которой можно пользоваться

В Word Study

1. Find the related verbs in the texts “Components”, “Solid-State Lasers”, “Krypton Fluoride Gas Lasers”, “Light-Ion Accelerators”, “Heavy Ion Accelerators”.

delivery performance production

reduction requirement operation

compression emission achievement

storage demonstration extraction

2. Find the related nouns in the texts abovementioned.

to reduce to induce to drive

to react to limit to fuse

to confine to react to perform

to emit to generate to propagate

3. Find the related adjectives

proportion magnet nucleus

linearization inertia gas

policy satisfaction nation

ENERGY FROM INERTIAL FUSION

Abridged

Progress in drivers, reactors and targets has made smaller, more flexible power plants feasible and has reduced the potential costs of developing them.

William J. Hogan, Roger Dangeiter and Gerald L. Kulcinski

1 Fusion is potentially a safe, clean energy source not limited by political boundaries. Magnetic and inertial fusion share this promise, but there are differences between them. An inertial fusion power plant is based on different physics and technology from a magnetic fusion power plant and therefore presents somewhat different benefits and challenges. The facilities required to demon­strate inertial fusion power are potentially much smaller. In this article we describe concepts for such a power plant, its beneficial features and a low-cost reactor test facility for developing practical fusion power.

2 Some of the challenges facing inertial confinement fusion as opposed to magnetic fusion include inertial confinement's different ignition and burn method, its pulsed nature, the high rate at which targets must be manufactured and put in place, and the technically difficult driver-reactor interface. Inertial fusion power plants must be designed to handle these technical problems in a satisfactory manner.

The Cascade reactor. A flowing bed of ceramic granules, held against the wall by the rotating chamber, transforms thermonuclear energy into heat, breeds tritium and protects the structure from the effects of the thermonuclear microexplosions. The granules are fed into the ends of the reactor and slide along the wall to the waist, where they exit and are thrown into heat exchangers through tubes (not shown). The reactor wall consists of silicon carbide tiles held in compression with composite tendons.

Figure 1

3 Figure 1 shows one design concept, known as Cascade. Here ceramic granules cascade along the walls of the reaction chamber to collect the fusion energy, breed tritium and protect the structure from the short bursts of fusion energy.