
- •Майкл а. Гриппи патофизиология легких
- •Предисловие к изданию на русском языке
- •Часть I
- •Глава 1
- •Майкл а. Гриппи
- •Глава 2 Механика дыхания
- •Закладка
- •I лава с.. Тслагтиа «цылапуш
- •Глава 3. Распределение вентиляции
- •Глава 4. Физиологические основы тестирования функЦий лэтКих
- •Глава 5
- •Глава V
- •Глава 7
- •Глава 8
- •Часть II
- •14 800/Мм3', полиморфноядерные - 71 %, палочкоядерные - 6 %, лимфоциты -
- •Часть III
- •Глава 12
- •Глава 13
- •V/q отношения в нормальном легком
- •Глава 15
- •Часть IV
- •Глава 17
- •Глава 7 9
- •308______Приложение 1. Символы и понятия, общепринятые в физиологии дыхания
- •Глава 10;
- •Часть I Структурно-функциональные связи легких,
- •Глава 1. Структура воздухоносных путей и паренхимы легких
- •Глава 2. Механика дыхания (Майкл а. Гриппы)..............................................................
- •Глава 3. Распределение вентиляции (Майкл а. Гриппы).....,.........................................
- •Глава 4. Физиологические основы тестирования
- •Глава 5. Механизм бронхоконстрикции и бронхиальная астма
- •Глава 6. Хроническая обструктивная болезнь легких
- •Глава 7. Иммунология легких и интерстициальные
- •Глава 8. Клинические примеры: механика дыхания, обструктивные
- •Глава 9. Обмен газов в легких (Майкл а. Гриппи)......................................................139
- •Глава 10. Транспорт газов к периферическим тканям
- •Глава 11. Клинические примеры: обмен газов и их транспорт
- •Часть III. Легочное кровообращение и его отношение
- •Глава 12. Легочное кровообращение (Гарольд и. Належки)....................................179
- •Глава 13.Вентиляционно-перфузионные отношения (Пол н. Ланкен)...............195
- •Глава 14. Кардиогенный и некардиогенный отек легких
- •Глава 15. Клинические примеры: легочное кровообращение
- •Часть IV. Интегрированные дыхательные функции:
- •Глава 16. Гуморальная и нервная регуляция дыхания (Скотт Менакер)...............237
- •Глава 17. Регуляция дыхания во время сна (Ричард Шваб)........................................251
- •Глава 18. Патофизиология дыхательной недостаточности (Пол я. Ланкен)..........265
- •Глава 19. Физиология мышечной деятельности
- •Глава 20. Клинические примеры: нарушения регуляции дыхания и дыхательная недостаточность (Майкл л. Гриппы) .........................................297
- •194021, Ул. Политехническая, д. 26 телефакс (812) 247-9301
- •109202, Перовское шоссе, д. 10 телефакс (095) 170-6674 e-mail: poznkn@orc.Ru
- •703475, Москва, ул. Краснопролетарская, д. 16
Глава 2 Механика дыхания
Майкл А. Гриппи
В главе 1 был представлен краткий обзор анатомии грудной клетки, включающий функциональную анатомию легких. Теперь мы обратимся к той области физиологии дыхания, которая рассматривает механические силы, ответственные за движение потока воздуха внутрь грудной клетки и обратно – к механике легких. Чтобы обеспечить поглощение кислорода и выделение двуокиси углерода, свежий воздух должен постоянно доставляться к альвеолам с помощью дыхательного насоса.
Понимание механизма его действия требует рассмотрения ряда положений:
1. Дыхательные мышцы. Чтобы обеспечить поток газов в дыхательной системе, должна быть затрачена определенная работа. За выполнение этой работы ответственны дыхательные мышцы.
2. Эластические свойства легких и грудной стенки. Легкие и грудная клетка обладают растяжимостью. Их механические свойства представляют собой важные факторы, определяющие объемы перемещающихся газов и достигаемые при этом обьемные скорости потока.
3. Свойства ВП, паренхимы легких и грудной стенки, определяющие сопротивление потоку воздуха. Сопротивление потоку при вдохе и выдохе играет первостепенную роль в определении уровня вентиляции и ее паттерна. Эластические и рези-(тивные свойства насоса образуют вместе так называемый "импеданс" дыхательной системы.
4. Неравномерность вентиляции. Вентиляция легких неравномерна даже у здоровых людей. В основе этой неравномерности лежит взаимодействие различных механических сил, действующих вдыхательной системе,
5. Работа дыхания. Работа, выполняемая дыхательными мышцами, определяется изменением объема грудной клетки при дыхании и соответствующими величинами давления. Работа дыхания является отвлеченным понятием, имеющим важное клиническое приложение.
Изменение механических свойств дыхательной системы - обычное проявление многих клинически важных легочных расстройств. С одной стороны, изменение механических свойств легких может быть существенной чертой патофизиологической картины болезни (например, повышение сопротивления ВII во время острого приступа бронхиальной астмы). С другой, - просто одним из проявлений многоликой болезни, при которой газообмен, легочный кровоток и другие физиологические процессы также изменены (например, застойная сердечная недостаточность или легочный фиброз).
В этой главе: (1) даются основы механики дыхания у здоровых и больных людей; (2) рассматриваются широко применяемые в пульмонологии терапевтические приемы (например, использование бронходилататоров при бронхиальной астме и механической вентиляции придыхательной недостаточности); (3) излагаются принципы, на которых базируются многие клинические тесты функции легких.
Дыхательные мышцы
При спонтанном дыхании активность инспираторных мышц необходима для преодоления импеданса дыхательной системы. Важнейшей мышцей вдоха является диафрагма — куполообразная скелетная мышца, разделяющая грудную и брюшную полости. Диафрагма состоит из двух частей: реберной, прикрепляющейся к ребрам; и круральной, окружающей центральные органы (например, пищевод) и не прикрепленной к ребрам. При спокойном дыхании диафрагма является единственной активной инспираторной мышцей. При необходимости увеличения вентиляции, например при физической нагрузке или болезненных состояниях, подобных бронхиальной астме, активизируются и другие мышцы. К ним относятся наружные межреберные, лестничные и грудино-ключично-сосцевидные мышцы. Две последние группы мышц называются дополнительными дыхательными мышцами.
В отличие от вдоха, выдох в нормальных условиях в состоянии покоя происходит пассивно. Эластическая отдача легких и грудной стенки обеспечивает возникновение градиента давления, достаточного для экспираторного потока (разделы "Эластические свойства дыхательной системы" и "Свойства дыхательной системы, определяющие сопротивление потоку"). При обструкции ВП выдох становится активным процессом, требующим работы экспираторных мышц, включая внутренние межреберные и брюшные (наружную и внутреннюю косую, поперечную брюшную и прямую брюшную). Дополнительными мышцами выдоха являются мышцы голосовой щели и диафрагма. Причем первые из них сужают голосовую щель, обеспечивая снижение скорости экспираторного потока. Сокращение диафрагмы в начале выдоха приводит в дальнейшем к его торможению. Это тормозящее действие, наблюдаемое во время спокойного дыхания, противостоит экспираторному эффекту давления статической эластической отдачи, генерированному во время предыдущего вдоха.
Факторы, определяющие напряжение дыхательных мышц
Как всякая скелетная мускулатура, дыхательные мышцы характеризуются следующими отношениями: длина-напряжение, сила-частота и сила-скорость. Кроме того, поскольку диафрагма имеет куполообразную форму, необходимо особо рассмотреть отношение между давлением и радиусом кривизны в соответствии с законом Лапласа.
Сила, развиваемая скелетной мышцей конечности, является функцией ее длины (рис. 2-1). При постоянном уровне стимуляции максимальное напряжение достигается при длине покоящейся мышцы. Любое сокращение или растягивание мышцы перед стимуляцией приводит к субмаксимальному напряжению. Однако, в отличие от скелетной мышцы конечности, диафрагма развивает пиковую величину силы приблизительно при 130 % ее длины в состоянии покоя. Снижение напряжения мышцы при меньшей ее длине, т. е. при увеличении объема легких в покое, приобретает важное клиническое значение. Например, при хронической обструктивной болезни легких, включающей хронический бронхит и эмфизему (гл. 6), гиперинфляция легких приводит к уплощению диафрагмы. Такая диафрагма имеет меньшую длину и поэтому развивает меньшую силу. Она работает в невыгодных, с точки зрения механики, условиях.
Рис. 2-1. Отношение длина-напряжение для скелетной мышцы конечности и диафрагмы. Мышца конечности развивает максимальное напряжение при длине покоя, диафрагма - при длине около 130 % уровня покоя.
Сила сокращения является также функцией частоты стимуляции мышечного волокна и скорости его укорочения (рис. 2-2). До определенного момента сила увеличивается с повышением частоты стимуляции, затем остается постоянной, несмотря на дальнейшее увеличение частоты стимула (рис. 2-2А). С другой стороны, при больших скоростях укорочения мышцы развивается меньшее напряжение (рис. 2-2Б). Клинический смысл такого соотношения заключается в том, что при данном уровне стимуляции дыхательных мышц большая объемная скорость воздушного потока воз-н икает при меньшем напряжении, поскольку объемная скорость потока прямо пропорциональна скорости укорочения мышц.
В дополнение к этим фундаментальным отношениям необходимо рассмотреть уникальную геометрию диафрагмы как куполообразной мышцы. Закон Лапласа описывает отношение между давлением, напряжением и радиусом кривизны:
Р = 2Т/r, [2-1]
где: Р — давление, создаваемое мышцей, Т — напряжение мышцы, r — радиус кривизны.
По мере уплощения диафрагмы радиус ее кривизны увеличивается и генерируемое давление понижается (рис. 2-3). Это явление, вместе с укорочением мышцы, обусловливает снижение силы диафрагмы при гиперинфляции у пациентов с хронической обструктивной болезнью легких.
Трансдиафрагмальное давление
Активность дыхательных мышц обеспечивает вентиляцию путем изменения конфигурации грудной клетки. В частности, во время спокойного вдоха опущение диафрагмы (уплощение ее купола) вызывает расширение нижней части грудной клетки в поперечном и переднезаднем направлениях. В результате этого внутри-грудное давление падает, становясь отрицательным, и легкие расправляются воздухом, поступающим в грудную полость под воздействием отрицательного градиента давления. По мере снижения внутригрудного давления растет внутрибрюшное давление, поскольку движение диафрагмы книзу сжимает содержимое брюшной полости. Внутригрудное давление обычно измеряется как плевральное (раздел "Взаимоотношения давлений в дыхательной системе"). Трансдиафрагмальное давление, разница между внутрибрюшным и плевральным (рис. 2-4), рассчитывается как:
Pdi = Pab-Ppl, [2-2]
где: Pdi - трансдиафрагмальное давление,
Pab — внутрибрюшное давление,
Ppl – плевральное давление.
Рис. 2-2. Отношения сила-частота и сила -скорость для скелетной мышцы. (А) Отношение сила-частота. Сила до определенной точки растет вместе с: частотой стимула. Достигнув ее, сила больше не увеличивается, несмотря па повышение частоты стимуляции. Сила выражена в процентах от максимально достижимой. (Б) Отношение сила-скорость. Сила уменьшается но мере увеличения скорости укорочения мышцы. Скорость выражена кик отношение1 фактической скорости к длине покоящейся мышцы.
Положительное трансдиафрагмальное давление указывает на активное сокращение диафрагмы. Когда диафрагма парализована или утомлена, она во время вдоха может двигаться вверх, внутрь грудной полости, в то время как другие инспираторные мышцы сокращаются и создают отрицательное внутригрудное давление. Таким образом, трансдиафрагмальное давление остается равным нулю. Измерение трансдиафрагмальиого давления представляет собой наиболее точный способ выявления двустороннего паралича диафрагмы. Паралич диафрагмы может возникать при множестве расстройств, включая заболевания продолговатого мозга или диафрагмальных моторных ядер, болезни демиелинизации периферических нервов (например, синдром Гийена—Барре), болезни нервно-мышечных синапсов (например, миастения) или первичное поражение мышц (например, мышечная дистрофия).
Рис. 2-3. Влияние изменения радиуса кринизны на создание давления диафрагмой в соответствии с законом Лапласа. Слепа - нормальный радиус кривизны. Справа радиус кривизны, увеличенный из-за уплощения диафрагмы. По мере уплощения диафрагма увеличивает свой радиус (г2 > г,). Мри ранном напряжении (Т) давление, развиваемое уплощенной мышцей, меньше, чем то, которое создается мышцей с нормальной кривизной (Р2 < pi)
Как отмечалось, низкое трансдиафрагмальное давление наблюдается при утомлении диафрагмы. В условиях основного обмена на долю диафрагмы и других дыхательтельных мышц приходится менее 5 % общего потребления кислорода. При высоких вентиляторных требованиях (например, при физической нагрузке или пневмонии у больного с эмфиземой) потребность дыхательных мышц в кислороде составляет существенный компонент его общего потребления. Чрезмерная потребность в кислороде наряду с другими малоизученными факторами могут привести к утомлению дыхательных мышц. Оно наглядно проявляется увеличенной частотой дыхания, парадоксальным движением диафрагмы и брюшной стенки (во время вдоха передняя брюшная стенка двигается во внутрь, в то время как под воздействием отрицательного давления диафрагма затягивается кверху, в грудную полость) и, в конечном итоге, повышением напряжения двуокиси углерода в артериальной крови (Расо2).
Рис. 2-4. Понятие трансдиафраг-малыюго давления (Pdi): Pdi - давление, которое диафрагма создаст во время вдоха. Оно представляет собой разницу между внутрибрюшным давлением (РаЬ) и плевральным (Ppl). По мере того как диафрагма сокращается и опускается в брюшную .полость, Ppl падает, а РаЬ растет. РаЬ измеряется с помощью внутрижелудочного, а Ppl - внутрипищеводного катетера, снабженного баллоном.
Взаимоотношения давлений в дыхательной системе
Различные виды давлений, определяющие поток воздуха в легких, схематически изображены на рис. 2-5.
Рао — давление на входе в ВП (т. е. в ротовой полости). В нормальных условиях, когда поток отсутствует (в конце вдоха и выдоха) и ВП открыты в атмосферу, Рао равно нулю. Pbs — давление атмосферы на поверхность тела. Некоторые механические системы для принудительной вентиляции легких создают отрицательное давление на поверхность тела, генерируя вакуум вокруг туловища пациента. В этих условиях Pbs прерывисто опускается ниже нуля. Ppl — плевральное давление — давление внутри плевральной полости. Его величина зависит от величин и направлений сил, создаваемых эластической паренхимой легких и грудной стенкой. Ppl может быть измерено с помощью баллонного катетера, помещенного внутрь пищевода, поскольку изменения внутрипищеводного давления во время дыхания отражают изменения внутриплеврального давления. Давление, создаваемое эластической паренхимой легкого, на рис. 2-5 не представлено; оно направлено внутрь и называется давлением эластической отдачи, Pel. Альвеолярное давление, Palv — давление внутри альвеол. Оно может быть отрицательным (во время вдоха), положительным (во время выдоха) или нулевым (в конце вдоха и в конце выдоха, когда поток отсутствует и голосовая щель открыта). Альвеолярное давление представляет собой сумму давления эластической отдачи и плеврального давления:
Palv = Pel + Ppl [2-3]
Pi - сквозное чрезлегочное или транспулъмоналъное давление необходимо для возникновения воздушного потока и поддержания данного уровня расправления легких. Р1 составляет разницу между альвеолярным и плевральным давлениями (Pi = Palv - Ppl). Pw-сквозное чрезстенное или трансмуралъное давление является разницей между плевральным давлением и давлением на поверхности тела (Pw = Ppl - Pbs). Prs - гпрансторакалъное давление представляет разницу между альвеолярным давлением и давлением на поверхности тела (Prs = Palv - Pbs).
Далее будут рассмотрены эластические свойства легких, грудной стенки и дыхательной системы в целом.
Рис. 2-5. Схематическое изображение давлений и градиентов давлений, создающих поток воздуха
Эластические свойства дыхательной системы
Сокращение инспираторных мышц создает градиент давления между атмосферой и альвеолами, в результате чего возникает поток воздуха. Этот градиент преодолевает: (1) эластическую отдачу дыхательной системы, (2) фрикционное сопротивление ВП воздушному потоку и (3) инерционное сопротивление трахео-бронхиального воздушного столба, легких и грудной стенки. Взаимоотношения этих трех элементов выражены у равнением движения легких:
Ptot = (Ex AV) + (RxV) + (IxV), [2-4]
где: Ptot — движущее давление,
Е — эластичность,
А V — изменение объема легких,
R — сопротивление,
V — объемная скорость потока воздуха,
I — инерционность,
V — скорость изменения объемной скорости воздушного потока (ускорение).
Отдельные элементы уравнения рассматриваются в последующих разделах.
Первый элемент (Е х AV) представляет давление, необходимое для преодоления эластической отдачи дыхательной системы. Для упрощения анализа сначала рассмотрим эластические свойства легких и грудной стенки в отдельности с тем, чтобы в дальнейшем интегрировать эти две структуры в единое функциональное целое.
Легкое
В качестве аналогии с наполнением легкого воздухом рассмотрим эластичный баллон. Чтобы раздуть баллон, необходимо создать градиент давления сквозь его стенку (эквивалент транспульмонального давления). Этот градиент может быть создан с помощью отрицательного давления вокруг баллона, помещенного в камеру, из которой воздух удален вакуумным насосом. Или положительное давление может быть создано внутри баллона при помощи сжатого воздуха. В любом случае, устранение отрицательного или положительного давления позволяет наполненному баллону быстро опустошиться из-за свойственной ему эластической отдачи.
Более физиологической моделью является изолированное легкое (рис. 2-6). На рис. 2-6А изображено помещенное в камеру легкое, ВП которого присоединены к спирометру - прибору, измеряющему изменения легочного объема. Отрицательное давление в камере измеряется манометром. По мере того как воздух удаляется из камеры, легкое расправляется благодаря увеличению транспульмонального давления. По ходу ступенчатого возрастания давления наполнения (в действительности происходит прогрессивное уменьшение давления вокруг легкого) регистрируются соответствующие легочные объемы. После достижения максимального наполнения легкого вакуум в камере тоже ступенчато понижается и соответствующие объемы легкого снова регистрируются. Таким способом получают статическую кривую давление-объем, поскольку давление и объем измеряются в отсутствие потока воздуха (рис. 2-6Б).
Анализ этих кривых дает много важных сведений. Характерной чертой является наличие двух раздельных кривых: для вдоха и для выдоха. Чтобы поддержать данный объем легкого во время его наполнения, требуется большее транспульмональное давление, чем при спадении легкого. Это различие между кривыми (инспираторное давление-объем и экспираторное давление-объем) представляет собой гистерезис – свойство всех эластических структур. Дополнением к этому важному наблюдению является то, что кривые не исходят из начала координат: их начальное значение на Y-оси не равно нулю. Это указывает на то, что легкое содержит небольшой, но измеримый объем газа даже тогда, когда на него не действует растягивающее давление. Действительно, когда легкое человека извлекается из грудной клетки при аутопсии или во время хирургической операции, оно содержит небольшое количество газа.
Рис. 2-6. Образование кривых давление-объем (P-V) на изолированных легких. (А) Наполнение достигается удалением воздуха из камеры, в которую помещены легкие. Давление измеряется манометром, а объемы легких, или, точнее, изменения объема легких измеряются спирометром. (Б) Кривые P-V на выдохе и на вдохе. Точки, использованные для построения кривых, определялись в отсутствии потока воздуха. Таким образом, эти кривые отражают статические отношения P-V. Нижняя кривая образована во время ступенчатого наполнения, а верхняя - ступенчатого спадения легких
Растяжимость легких
Из рис. 2-6Б следует, что отношение между давлением и изменением объема легких не остается постоянным во всем диапазоне легочных объемов. При их малой величине это отношение может быть выражено как:
P = ExAV, [2-5]
где: Р — растягивающее давление,
Е — эластичность,
Д V — изменение объема легких.
Эластичность (константа) — есть мера упругости легочной ткани. Чем больше эластичность ткани, тем большее давление требуется приложить для достижения ладанного изменения объема легких.
При большом объеме легких необходимо большее растягивающее давление, чтобы получить заданное изменение объема. По достижении максимального объема легкого дальнейший прирост давления увеличить его не может: кривая давление-объем переходит в свою плоскую часть. Изменение объема на единицу давления отражается наклоном рассматриваемой кривой давление-объем и называется статической растяжимостью (Cstat). Она представляет собой меру податливости легкого и находится в реципрокном отношении к его эластичности (Е =* 1/Cstat). Легкое более растяжимо при низких и средних объемах, чем при больших.
На статическую растяжимость легкого влияет множество факторов, включая сто размеры. Легкое крупных размеров подвержено большим изменениям своего объема на единицу изменения давления, чем маленькое легкое. С целью сравнения можно "нормализовать" влияние размеров легкого на его растяжимость. Нормализованная растяжимость известна как удельная растяжимость. Она рассчитывается делением статической растяжимости на объем легких, при котором она измеряется. В клинике статическую растяжимость измеряют, получая кривую давление -объем при изменениях последнего от величины, соответствующей уровню спокойного выдоха (функциональная остаточная емкость, ФОБ, FRC), до объема на 500 мл больше FRC. Статическая растяжимость легкого у здоровых взрослых людей составляет величину около 200 мл/см вод. ст. или 0.2 л/см вод, ст.
В условиях патологии статическая растяжимость легких может как повышаться, так и понижаться. Эмфизема, для которой характерна значительная утрата как соединительнотканных компонентов легкого, так и альвеол, приводит к увеличению статической растяжимости (гл. 6). Фиброз легких (гл. 7), застойная сердечная недостаточность (отек легких), геморрагия легких и пневмония вызывают понижение статической легочной растяжимости. Кривые давление-объем, характерные для .здоровых людей, а также больных эмфиземой и легочным фиброзом, изображены на рис. 2-7.
Рис. 2-7. Кривые давление--объем у лдоровых и больных людей. Но оси абсциес давление статической отдачи легких (равное трапспуль момалыюму и плевральному в условиях отсутствия потока). Но оси ординат объем легких в процентах от должной величины TLC. Для перерастянутых ;>м(|)и коматозных легких TLC больше 100 % должной; для фиброиированпых легких TLC меньше 100 % должной. Кроме того, наклон кривой при эмфиземе увеличен, в то время как при фиброзе легких – уменьшен.
Давление в описанных ранее отношениях давление- объем, является транспульмональным. В статических условиях, при открытой голосовой щели Pal v равняется нулю, a Pi = Ppl. Плевральное давление, в свою очередь, равно давлению статической эластической отдачи (Pel). Какие же факторы определяют эластическую отдачу? Одним из них является содержание эластических структур в тканях. Эластин и коллаген находятся в альвеолярных стенках вокруг бронхов и кровеносных сосудов. Геометрическое расположение этих волокон придает легким эластические свойства, подобно тому, как нейлоновые нити делают чулок эластичным. Дополнительным фактором, важным в установлении отношений давление-объем легких, является поверхностное натяжение.
Рис. 2-8. Понерхностное натяжение и давление в пузырьке. (А) Поверхностное натяжение (Т) в мыльном ну.чыре. Силы, действующие на поверхность пузырька, стремятся уменьшить ее площадь и способствуют спадению пузырька, создавая внутри нею положительное давление (Р). (Б) .Чакон Лапласа. При данном поверхностном натяжении газ из меньшего пузырька будет перемешаться в больший, поскольку меньший радиус кривизны (г, < г2) создает более высокое давление (Р, > Р2) в меньшем пузырьке. (Для расчета Р в структуре с одной поверхностью раздела жидкость-газ закон Лапласа имеет вид Р == 2Т/r.)
Поверхностное натяжение
Поверхностное натяжение — это сила, возникающая на поверхности, разделяющей жидкость и газ (рис. 2-8А), когда силы сцепления между молекулами жидкой фазы превосходят силы адгезии между молекулами жидкой и газовой фаз. В результате этого площадь поверхности жидкости становится минимальной.
В качестве аналогии рассмотрим мыльный пузырь. Поверхностные силы в мыльном пузыре стремятся минимизировать площадь его поверхности, создавая внутри него положительное давление (рис. 2-8А). Для расчета этого давления может быть использован закон Лапласа. Согласно этому закону, чем меньше радиус пузыря, тем выше давление (рис. 2-8Б). В какой связи со всем этим находятся эластические свойства легкого?
Рис. 2-9. Соотношение между поверхностным натяжением и площадью поверхности (выраженной в процентах к максимальной площади) для воды при добавлении к воде детергента и для промывной жидкости легких, содержащей сурфактапт. Ilouepxпостное натяжение измерено методом поверхностного уравновешивания. Добавленный к воде детергент заметно снижает поверхностное натяжение. Для воды поверхностное натяжение остается постоянным и не зависит от площади поверхности. Для содержащей сурфактапт жидкости поверхностное натяжение является функцией площади поверхности. Оно падает почти до пуля, когда площадь поверхности мала. Кроме того, поверхностное натяжение варьирует в зависимости от условий измерения: па увеличивающейся площади поверхности (вдох) или уменьшающейся (выдох), то есть обнаруживает гистерезис. (По: Clements J. Л.. Ticrney I). К Alveolar instability associated with altered surface tension. In: Handbook of Physiology, Respiration. Section 3, Vol. II. Fenn W.O., Rahn II., eds Bethesda, M. D.: American Physio'locicaf Society 1988-1.568.)
Силы поверхностного натяжения в легких взаимодействуют с естественной эластической отдачей, обеспечивая спадение альвеол. Эффект поверхностного натяжения изменяется благодаря веществу, обнаруженному в легких - сурфактанту, которое секретируется альвеолярными эпителиальными клетками II типа. Сурфактант, состоящий из фосфолипидов и протеинов, выстилает альвеолярную поверхность и снижает внутриальвеолярное поверхностное натяжение. Сурфактант обладает двумя уникальными свойствами: (1) он вызывает большее снижение поверхностного натяжения при меньших площадях поверхности (т. е. при меньших легочных объемах); и (2) это снижение поверхностного натяжения более выражено во время выдоха, чем во время вдоха (рис. 2-9).
Сурфактант выполняет несколько важных физиологических функций. Во-первых, понижая поверхностное натяжение, он увеличивает растяжимость легкого. Во-вторых, сурфактант стабилизирует альвеолы благодаря двум эффектам: (1) большим снижением поверхностного натяжения при малых объемах легкого, что уменьшает вероятность коллапса альвеол (появления ателектазов); (2) предотвращает перемещение воздуха из меньших альвеол внутрь больших в результате более выраженного снижения поверхностного натяжения в легочных единицах меньшего размера. Последнее обстоятельство сглаживает эффект меньшего радиуса кривизны и увеличенного давления. Респираторный дистресс-синдром новорожденных, известный также как болезнь гиалиновых мембран, характеризуется дефицитом нормального сурфактанта. У больных детей легкие ригидные, неподатливые, склонные к коллапсу.
До сих пор обсуждение касалось изолированного легкого, но в анализе механики дыхательной системы очень важны структурные и функциональные характеристики грудной стенки.