
- •Введение
- •1 Теоретические основы
- •Основные обозначения
- •1.2 Способы проецирования
- •1.2.1 Центральное проецирование
- •1.2.2 Параллельное проецирование
- •1.2.3 Ортогональное проецирование
- •1.2.4 Образование двух- и трёхкартинного комплексного чертежа
- •1.2.4.1 Конкурирующие точки
- •1.3 Ортогональные проекции геометрических объектов и позиционные
- •1.3.1 Изображение прямой линии на комплексном чертеже
- •Р исунок 1.3.1 – Положение прямой относительно плоскостей проекций
- •1.3.1.1 Прямые частного положения
- •1.3.1.2 Следы прямой линии
- •1.3.1.3 Определение натуральной величины отрезка прямой
- •1.3.1.4 Взаимное положение двух прямых
- •1.3.1.5 Теорема о проецировании прямого угла
- •1.3.2 Изображение плоскости на комплексном чертеже
- •1.3.2.1 Главные линии плоскости
- •1.3.2.2 Взаимопринадлежность (инцидентность) точки и плоскости
- •1.3.2.3 Следы плоскости
- •1.3.2.4 Плоскости частного положения
- •1.3.2.5 Параллельность прямой и плоскости
- •1.3.2.6 Параллельность плоскостей
- •1.3.2.7 Перпендикулярность прямой и плоскости
- •1.3.2.8 Пересечение прямой линии с плоскостью
- •1.3.2.9 Пересечение двух плоскостей
- •1.3.3 Кривые линии
- •1.3.3.1 Проекционные свойства плоских кривых
- •1.3.3.2 Ортогональная проекция окружности
- •1.3.4 Образование, задание и изображение поверхностей
- •1.3.4.1 Линейчатые поверхности
- •1 .3.4.2 Коническая и цилиндрическая поверхности
- •1.3.4.3 Поверхности вращения
- •1.3.4.4 Поверхности вращения второго порядка
- •1.3.4.5 Пересечение поверхности с плоскостью
- •1.3.4.6 Конические сечения
- •1.3.4.7 Пересечение поверхностей
- •1.3.4.7.1 Общий алгоритм решения задачи
- •1.3.4.7.2 Примеры пересечения поверхностей
- •1.3.4.7.3 Особые случаи пересечения поверхностей второго порядка
- •1.4 Преобразование комплексного чертежа
- •1.4.1 Способ замены плоскостей проекций
- •1.4.2 Основные задачи, решаемые способом замены плоскостей проекций
- •1.4.3 Способ плоскопараллельного перемещения
- •1.4.4 Способ вращения
- •1.4.4.1 Способ вращения вокруг проецирующей оси
- •1.4.4.2 Основные задачи, решаемые способом вращения
- •1.5 Построение разверток
- •1.5.1 Развертка поверхностей многогранников
- •1.5.1.1 Развертка поверхности призмы
- •1.5.1.2 Развертка поверхности пирамиды
- •1.5.2 Развертка развертываемых кривых поверхностей
- •1.5.2.1 Развертка цилиндрической поверхности
- •1.5.2.2 Развертка конической поверхности
- •2. Геометрические модели в параллельных аксонометрических проекциях
- •2.1 Аксонометрические проекции
- •2.2 Стандартные аксонометрические системы
- •2.3 Аксонометрическая проекция окружности
- •3 Перспективные проекции
- •3.1 Линейная перспектива
- •3.2 Элементы аппарата проецирования
- •3.3 Перспектива точки
- •3.4 Перспектива прямой линии
- •3.5 Построение перспективы способом архитекторов
- •3.5.1 Выбор положения картинной плоскости и точки зрения
- •3.5.2 Построение перспективы с двумя точками схода
- •3.5.3 Построение перспективы с одной точкой схода
- •4 Построение теней
- •4.1 Построение теней в ортогональных проекциях
- •4.1.1 Тень от точки
- •4.1.2 Тень от прямой
- •4.1.3 Тень плоской фигуры
- •4.1.4 Тени геометрических тел
- •4.1.5 Способ обратных лучей
- •4.2 Тени в аксонометрических проекциях
- •4.2.1 Тень от точки и прямой
- •4.2.2 Тени геометрических тел
- •4.3 Тени в перспективе
- •4.3.1 Тени от точки
- •4.3.2 Тень от прямой
- •4.3.3 Тень от поверхности
2.2 Стандартные аксонометрические системы
Из частных видов аксонометрических проекций, предусмотренных государственным стандартом, чаще всего используют ортогональную изометрию, и ортогональную диметрию.
Ортогональная изометрия. В изометрии показатели искажения по всем трём осям одинаковы, т.е. p=q=r. Аксонометрические оси в ортогональной изометрии образуют между собой углы по 120º (рисунок 2.2.1).
В ортогональной изометрии 3р2=2 или p=q=r=0,82. На практике для удобства построения пользуются приведённой ортогональной изометрией, в которой показатели искажения приводятся к единице, т.е. p=q=r=1. При этом коэффициент приведения будет равен m=1/p=1,22. Это означает, что приведённая ортогональная изометрия даёт увеличение изображения приблизительно в 1,22 раза, т.е. масштаб такого изображения будет M 1,22:1.
Рисунок 2.2.1 – Оси ортогональной изометрии
Ортогональная диметрия. В то время, как ортогональная изометрия существует только одна, ортогональных диметрий можно построить бесчисленное множество. Наиболее простую и распространённую диметрию получают, если p=r и q=p/2.
В
ортогональной диметрии
,
откуда
Тогда
p=r=0,94;
q=0,47.
В приведённой ортогональной диметрии показатели искажения будут p=r=1 и q=0,5. При этом коэффициент приведения равен: m=1/p=1,06.
Это означает, что приведённая ортогональная диметрия даёт изображение в масштабе М 1,06:1. Расположение осей определяется с помощью тангенсов углов наклона осей к горизонтальной линии. Практически можно использовать следующий способ построения аксонометрических осей в ортогональной диметрии (рисунок 2.2.2).
Рисунок 2.2.2
– Оси ортогональной диметрии
Через точку О проводим вспомогательную прямую, перпендикулярную к выбранной оси z. В обе стороны от точки О откладываем на этой прямой по восемь произвольных, но равных между собой отрезков. В направлении, противоположном положительному направлению оси z, откладываем от левой конечной точки один такой же отрезок, а от правой конечной точки – семь отрезков. Соединив полученные точки с точкой О, получим аксонометрические оси x и y.
2.3 Аксонометрическая проекция окружности
Аксонометрической проекцией окружности является эллипс. Построение эллипсов, изображающих окружности, расположенные в координатных плоскостях или в плоскостях, им параллельных, производится следующим образом.
В ортогональной приведенной изометрии малые оси эллипсов параллельны аксонометрическим осям, перпендикулярным тем плоскостям проекций, в которых окружности располагаются, а большие оси им перпендикулярны. Величины больших осей всех трёх эллипсов, изображающих окружности, расположенные в координатных плоскостях или в плоскостях, им параллельных, равны в приведённой изометрии 1,22d (d – диаметр окружности). Малые оси эллипсов равны 0,71d. Построение эллипсов показано на рисунке 1.1.20 (рисунок 2.3.1)
В
ортогональной приведённой диметрии
большая ось каждого из трёх эллипсов
равна 1,06d.
Малые оси эллипсов как аксонометрических
проекций окружностей, расположенных в
координатных плоскостях хОу
и уОz,
равны 0,35d.
Для координатной плоскости хОz
величина малой оси равна 0,95d.
Построение эллипсов соответствует
рисунку 2.3.2
Рисунок 2.3.1 – Ортогональная приведённая изометрия окружности
Рисунок 2.3.2 – Ортогональная приведённая диметрия окружности