Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мат аналіз лекції зібрані.doc
Скачиваний:
57
Добавлен:
09.11.2018
Размер:
7.43 Mб
Скачать

2. Операції над неперервними функціями

Теорема. Якщо функції неперервні в точці , то функції у точці також неперервні.

Доведення цієї теореми безпосередньо випливає з означення неперервності функції в точці та властивостей границь.

Теорема (про неперервність складеної функції). Якщо функція неперервна в точці , а функція неперервна в точці , причому , то складена функція неперервна, як функція від , у точці .

Доведення. Нехай задано довільне число . Тоді за неперервністю функції у точці знайдеться число таке, що для всіх , які задовольняють умову .

Для числа за неперервністю функції у точці знайдеться число таке, що для всіх , які задовольняють умову .

Отже, для довільного числа знайдеться число таке, що з умови випливає нерівність , а це означає, що функція неперервна в точці .

Можна довести, що всі елементарні функції в області їх визначення неперервні.

Звернемо увагу на те, що з означення неперервності функції у точці випливає

.

Наведемо приклади деяких важливих границь, обчислення яких спирається на неперервність елементарних функцій.

  1. .

Доведення.

.

Якщо , то маємо: , тобто при виконується .

  1. .

Доведення. Покладемо . Тоді . Якщо , то і .

.

Якщо , то маємо: , тобто при справедливо .

  1. .

Доведення. Покладемо . Якщо , то і .

Далі . Звідси маємо: . Тоді

Розглянемо степенево-показниковий вираз . Нехай . Запишемо

.

Оскільки , то . Звідси маємо

.

Зазначимо, що вирази є не визначеними. Для знаходження відповіді на питання, що є границею виразу , у цих випадках недостатньо знати лише границі функцій , потрібно знати закон, за яким вони прямують до своїх границь.

3. Класифікація точок розриву функції.

Точка називається точкою розриву функції , якщо функція у точці не є неперервною.

Точки розриву класифікують наступним чином.

Розриви першого роду. Якщо в точці функція має скінченну ліву й скінченну праву границю і вони рівні між собою, тобто

,

але відмінні від значення функції в точці або значення не існує, то точка називається точкою усувного розриву функції .

Якщо в точці функція має скінченну границю справа і скінченну границю зліва й , то точка називається точкою розриву функції із скінченним стрибком.

Розриви другого роду. Точка називається точкою розриву другого роду функції , якщо в цій точці функція не має принаймні однієї з односторонніх границь або хоча б одна з односторонніх границь є нескінченною.

Кусково-неперервні функції. Функція називається кусково-неперервною на відрізку , якщо вона неперервна в усіх внутрішніх точках , за винятком, можливо, скінченного числа точок, у яких має розрив 1-го роду і , крім того, має односторонні границі в точках та .

ЛЕКЦІЯ 13

  1. Основні властивості неперервних функцій.

1. Основні властивості неперервних функцій

Перша теорема Больцано-Коші (теорема про обернення функції в нуль). Нехай функція неперервна на відрізку і на його кінцях значення функції мають різні знаки. Тоді існує точка така, що .

Доведення. Нехай для визначеності . Розділимо відрізок навпіл. Якщо , то теорема доведена. Якщо , то виберемо ту половину відрізка , на кінцях якої функція має значення різних знаків, і позначимо її . Розділимо відрізок навпіл. Якщо , то теорема доведена, в іншому випадку виберемо ту половину відрізка , на кінцях якої функція має значення різних знаків, та позначимо її . Якщо цей процес продовжувати необмежено, то або на якомусь -ому кроці значення функції в середині відрізка буде рівним нулю і тоді теорема доведена, або одержимо послідовність укладених відрізків

таких, що при і на кінцях кожного з відрізків функція має значення різних знаків, .

За теоремою про вкладені відрізки існує точка , яка належить кожному із відрізків і . Ураховуючи неперервність функції (зокрема в точці ), маємо .

Звідси одержуємо .

Друга теорема Больцано-Коші (теорема про проміжне значення). Нехай функція неперервна на відрізку і на кінцях цього відрізка приймає значення де . Тоді для будь-якого числа існує точка така, що .

Доведення. Нехай для визначеності . Розглянемо допоміжну функцію

. Ця функція неперервна на відрізку і

, .

За першою теоремою Больцано-Коші існує точка така, що . Але . Отже, , тобто .

Перша теорема Вейєрштрасса. Якщо функція неперервна на відрізку , то вона обмежена на цьому відрізку.

Доведення. Нехай функція неперервна на відрізку . Припустимо, що вона на відрізку не обмежена. Поділимо відрізок пополам і виберемо ту його частину, де функція не обмежена. Позначимо її . Відрізок також поділимо пополам і виберемо ту його частину, де функція не обмежена. Позначимо вибрану половину . Продовжуючи необмежено цей процес, одержимо послідовність укладених відрізків

таких, що при . За теоремою про вкладені відрізки існує точка , яка належить кожному із них і . За означенням границі послідовності для будь-якого числа >0 існує такий номер , що при з іншого боку, існує такий номер , що при . Нехай . Тоді при виконуються нерівності: , тобто всі відрізки , де попадають в інтервал . Таким чином, функція не обмежена в деякому -околі точки . Але це неможливо, оскільки функція неперервна на відрізку , а значить, неперервна і в точці , тобто в точці існує скінченна границя функції , а тому в околі цієї точки вона обмежена.

Друга теорема Вейєрштрасса. Якщо функція неперервна на відрізку , то вона досягає на цьому відрізку своїх точних меж, тобто існують такі точки , що

.

Доведення. Нехай функція неперервна на відрізку . За першою теоремою Вейєрштрасса функція на відрізку обмежена. Отже, вона має точну верхню межу і точну нижню межу . Покажемо, що існує точка така, що . Припустимо, що в жодній точці відрізка функція не приймає значення, рівного , тобто для всіх точок . Складемо допоміжну функцію . Ця функція на відрізку неперервна, а тому обмежена. Отже, існує число таке, що для всіх .

Із цієї нерівності маємо: . Таким чином, – верхня межа функції на відрізку . Але це суперечить тому, що число  точна верхня межа цієї функції на відрізку . Звідси випливає, що зроблене припущення неправильне, тобто існує точка така, що .

Друга частина теореми доводиться аналогічно.

Зауваження. Точна верхня межа функції , неперервної на відрізку , називається її найбільшим (максимальним) значенням на цьому відрізку, а точна нижня межа – її найменшим (мінімальним) значенням. Різниця , де , називається коливанням функції на відрізку .

ЛЕКЦІЯ 14

  1. Поняття рівномірної неперервності функції.

  2. Теорема Кантора про рівномірну неперервність функції.

  3. Теорема про неперервність оберненої функції.