Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции математика.doc
Скачиваний:
131
Добавлен:
08.11.2018
Размер:
3.11 Mб
Скачать

2. Классическое определение вероятности событий

Определение 6.2. Вероятность события – количественная мера неопределенности, число, которое выражает степень уверенности в наступлении этого события.

Проведем следующее испытание. Бросим один игральный кубик. В результате такого испытания возможны такие события: «выпала единица», «двойка», «тройка», «четверка», «пятерка» и «шестерка». Эти события, очевидно, образуют полную группу. Изобразим их совокупность в виде отдельных точек (см. рис. 6.1). Введем следующие определения. Единичный, отдельный исход испытания называется элементарным событием (элементарным исходом). Набор всех элементарных событий – множество элементарных исходов (пространство элементарных событий). Таким образом, любое событие можно рассматривать как подмножество пространства элементарных событий. Мы говорим, что событие произошло, если в результате испытания произошло элементарное событие, принадлежащее этому подмножеству. Например, нас интересует событие – выпало четное число. Этому событию соответствует набор (подмножество) трех элементарных событий – «двойка», «четверка» и «шестерка». Появление одного из этих элементарных событий будет означать, что произошло интересующее нас событие . Как в данном случае можно определить вероятность события? Очевидно, что чем выше удельный вес элементарных событий, соответствующих интересующему нас событию, тем больше шансов, что оно появится, т.е. тем выше вероятность. В нашем случае всего 6 элементарных исходов, из них 3 четных числа. Таким образом, вероятность будет равна .

Рис. 6.1.

Рассмотренный метод является классическим, и сформировался в XVII веке в результате анализа азартных игр, и основано на понятии равновозможности событий.

Определение 6.3. Вероятностью наступления события называется отношение числа всех благоприятствующему этому событию элементарных исходов к общему числу всевозможных простых, попарно несовместных, единственно возможных и равновозможных элементарных исходов испытания :

(6.1)

Диапазон изменения вероятности случайного события: . Вероятность достоверного события: . Вероятность невозможного события: . Чем больше значение вероятности, тем более мы уверены в наступлении события.

Приведем несколько примеров на нахождение вероятности наступления событий с использованием классического определения вероятности.

Пример 6.7. В урне 4 красных и 8 зеленых яблока. Случайным образом вынули одно яблоко. Найти вероятность того, что это яблоко – зеленое.

Решение:

Пусть событие заключается в появлении зеленого яблока. В данной задаче число всевозможных исходов , число исходов, которые благоприятствуют наступлению события . Тогда, согласно классическому определению вероятности:

.

Пример 6.8. Одновременно бросили два игральных кубика. Какова вероятность того, что на обеих гранях выпадет в сумме 8 очков?

Решение:

Пусть событие заключается в том, что при одновременном бросании двух кубиков выпадет число 8. Число всех возможных исходов , поскольку каждому значению на одном кубике может соответствовать 6 значений на другом . Для благоприятных исходов составим следующую таблицу:

Кубик №1

2

3

4

5

6

Кубик №2

6

5

4

3

2

Получили всего благоприятных исходов .

Вычисляем вероятность:

.