Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Векторная алгебра, аналит. геом колледж.docx
Скачиваний:
5
Добавлен:
08.11.2018
Размер:
589.54 Кб
Скачать

Расстояния между различными объектами в пространстве.

1) Расстояние от точки до плоскости.

Найдем расстояние от т. М0 (x0, y0, z0) до плоскости Ax+By+Cz+D=0. Расстояние от точки до плоскости - это длина перпендикуляра, опущенного из точки на плоскость. Проведем через М0 прямую, перпендикулярную плоскости. т. N0 – точка пересечения прямой и плоскости.

.

а) Составим параметрические уравнения прямой:

l= N= (A, B, C) ║прямой,

т. М0 (x0, y0, z0) Є прямой.

x= At+ x0

y= Bt+ y0.

z= Ct+ z0

б) т. N0 – общая для прямой и плоскости, поэтому подставим параметрические уравнения прямой в уравнение плоскости и найдем параметр, соответствующий т. N0:

A(At+ x0) + B(Bt+ y0) + C(Ct+ z0) + D=0;

(A2+ B2+ C2)t+ Ax0+ By0+ Cz0+ D=0;

,

координаты т. N0 .

в)

- расстояние от точки до плоскости.

Пример. Найти расстояние от точки до плоскости, когда дано т. М0 (1, -1, 2), плоскость α: 3x- y+ z- 1=0.

2) Расстояние между двумя параллельными плоскостями.

На одной плоскости нужно взять произвольную точку и найти расстояние от этой точки до другой плоскости.

3) Расстояние между прямой и параллельной плоскостью.

На прямой нужно взять произвольную точку и найти расстояние от этой точки до плоскости.

4) Расстояние от точки до прямой.

т. М0 (3, 1, -1), прямая .

Проведем через т. М0 плоскость, перпендикулярную прямой (проектирующая плоскость). Найдем точку пересечения прямой и плоскости.

.

а) Составим уравнение плоскости:

l= N= (1, 2, 0)  плоскости,

т. М0 (3, 1, -1) Є плоскости.

A(x- x0) + B(y- y0) + C(z- z0)= 0,

1(x- 3) + 2(y- 1) + 0(z+ 1)= 0,

x+ 2y- 5= 0 - уравнение плоскости.

б) Составим параметрические уравнения прямой:

x= t+ 1

y= 2t- 1

z= 0t- 3

в) т. N0 – точка пересечения прямой и плоскости. Подставим параметрические уравнения прямой в уравнение плоскости.

(t+ 1)+ 2(2t- 1)- 5= 0, t+ 1+ 4t- 2- 5= 0, 5t- 6= 0, 5t= 6.

, т. N0

т. N0 .

г)

Прямая на плоскости.

Аналогично тому, как выводились канонические уравнения прямой в пространстве выводятся канонические уравнения прямой на плоскости.

М (х, у)

а

М00, у0)

l=(m, n)

М0М ║l. Отсюда следует, что - каноническое уравнение прямой на плоскости, где l=(m, n) - направляющий вектор прямой.

.

.

x= mt+ x0

y= nt+ y0 - параметрические уравнения прямой на плоскости.

M(x, y)

М1(x1, y1)

а

l

M2(x2, y2)

M1MM1M2. Отсюда следует, что - уравнение прямой через две точки.

Если в каноническом уравнении знаменатели m≠0, n≠0, то можно освободиться от знаменателей:

, , .

-общее уравнение прямой на плоскости.

N= (A, B) - нормаль, перпендикулярная прямой.

Проверка: N= (A, B)= (n, -m), l= (m, n), Nl= m· n- n· m= 0.

N l. Отсюда следует, что N  прямой.

N=(A, B)

l= (m, n)

Исследуем общее уравнение:

1) А=0, B и С≠ 0, т.е. нет х. Прямая параллельна ОХ.

0

x

у

а

y= const - уравнение прямой параллельной оси ОХ.

2) В=0, А и С≠ 0, т.е. нет у. Прямая параллельна ОУ.

х= const - уравнение прямой параллельной оси ОУ.

3) С=0, А и В ≠ 0: Ах+Ву=0, т.е. т. О(0, 0) принадлежит прямой. Прямая проходит через начало координат.

4) у=0 - уравнение оси ОХ. х=0 - уравнение оси ОУ.

Пусть прямая отсекает на координатных осях отрезки: a - на оси ОХ и b - на оси ОУ.

Прямая проходит через две точки A(a, 0) и В(0, b).

Уравнение: .

, ,

b(x-a)= -ay, bx- ab+ ay=0, bx+ ay- ab=0, bx+ ay= ab│: ab,

- уравнение прямой в отрезках.

Если в каноническом уравнении , m≠ 0, то выразим у:

- уравнение прямой с угловым коэффициентом (k).

Выясним смысл k и b.

Из треугольника: tg α=, tg α= k.

Угловой коэффициент прямой равен тангенсу угла наклона прямой к положительному направлению оси ОХ.

Так как y(0)=b, то b - отрезок, отсекаемой прямой на оси ОУ.

Через любую точку плоскости проходит бесконечное множество прямых.

Такое множество прямых, проходящих через точку, называется пучком прямых.

Уравнение пучка прямых: .

Задавая различные значения угловых коэффициентов k можно выбирать различные прямые из пучка.

Пример. Вывести формулу для вычисления расстояния от точки до прямой .