
- •Квантовая физика
- •Тема 3.1. Квантовые законы движения микрообъектов
- •§ 3.1.1. Корпускулярно-волновой дуализм
- •Основные связи корпускулярности и волны
- •§ 3.1.3. Соотношение неопределенностей, его физическая и методологическая интерпретация
- •§ 3.1.4. Волновая функция и ее статистический смысл
- •Величина
- •§ 3.1.5. Уравнение Шрёдингера – основное уравнение нерелятивистской квантовой механики. Уравнение Шрёдингера для стационарных состояний
- •§ 3.1.6. Частица в одномерной прямоугольной «потенциальной яме»
- •Общее решение дифференциального уравнения (3):
- •§ 3.1.7. Прохождение частицы сквозь потенциальный барьер.
- •3.2. Физика атомов и молекул § 3.2.1. Атом водорода в квантовой механике
- •§ 3.2.2. Спин электрона. Спиновое квантовое число
- •§ 3.2.3. Принцип Паули. Распределение электронов в атоме
- •§ 3.2.4. Периодическая система Менделеева
- •§ 3.2.5. Спектры излучения атомов
- •§ 3.2.6. Молекулы: химические связи, понятие
- •§ 3.2.7. Поглощение, спонтанное и вынужденное излучение
- •§ 3.2.8. Оптические квантовые генераторы (лазеры)
- •3.3. Электропроводимость полупроводников и металлов
- •§ 3.3.1. Понятие о квантовой статистике Бозе-Эйнштейна
- •§ 3.3.1. Вырожденный электронный газ в металле.
- •§ 3.3.2. Выводы квантовой теории электропроводности
- •§ 3.3.3. Понятие о зонной теории твердых тел
- •§ 3.3.4. Металлы, диэлектрики и полупроводники
- •§ 3.3.5. Собственная проводимость полупроводников
- •§ 3.3.6. Примесная проводимость полупроводников
- •3.3.7. Контакт двух металлов по зонной теории
- •3.3.8. Контакт электронного и дырочного полупроводников
- •3.3.9. Полупроводниковые диоды и триоды
- •Тема 3.4. Квантовые свойства излучения и их
- •§ 3.4.1. Тепловое излучение и его характеристики
- •§ 3.4.2. Закон Кирхгофа
- •§ 3.4.3. Законы Стефана — Больцмана и смешения Вина
- •§ 3.4.4. Виды фотоэлектрического эффекта.
- •§ 3.4.5. Уравнение Эйнштейна для внешнего фотоэффекта
- •§ 3.4.6. Фотон и его характеристики
- •§ 3.4.7. Эффект Комптона
- •Тема 3.5. Атомное ядро и ядерные силы
- •§ 3.5.1. Состав атомного ядра и его характеристики
- •§ 3.5.2. Дефект массы и энергия связи ядра
- •§ 3.5.4. Ядерные силы
- •§ 3.5.5. Радиоактивность
- •§ 3.5.6. Закон радиоактивного распада.
- •§ 3.5.9. Ядерные реакции
- •§ 3.5.12. Реакции деления ядра и цепные реакции деления
- •§ 3.5.13. Понятие о ядерной энергетике
- •§ 3.5.14. Реакция синтеза атомных ядер
3.3.8. Контакт электронного и дырочного полупроводников
(р-п-переход)
Граница соприкосновения двух полупроводников, один из которых имеет электронную, а другой – дырочную проводимость, называется электронно-дырочным переходом (или р-п-переходом). Эти переходы имеют большое практическое применение, являясь основой работы многих полупроводниковых приборов. р-п-переход нельзя осуществить просто механическим соединением двух полупроводников. Обычно области различной проводимости создают либо при выращивании кристаллов, либо при соответствующей обработке кристаллов. Например, на кристалл германия п-типа накладывается индиевая «таблетка» (рис. 27, а). Эта система нагревается примерно при 500 °С в вакууме или в атмосфере инертного газа; атомы индия диффундируют на некоторую глубину в германий. Затем расплав медленно охлаждают. Так как германий, содержащий индий, обладает дырочной проводимостью, то на границе закристаллизовавшегося расплава и германия п-типа образуется р-п-переход (рис. 27, б).
Рассмотрим
физические процессы, происходящие
в р-п-переходе
(рис.28). Пусть
донорный полупроводник (работа выхода
—
Ап,
уровень
Ферми —
)
приводится
в контакт (рис.
28,
б)
с
акцепторным
полупроводником (работа выхода
—
Ар,
уровень
Ферми –
).
Электроны
из п-полупроводника,
где
их концентрация
выше,
будут диффундировать в
р-полупроводник,
где их концентрация ниже.
Диффузия
же дырок происходит в
обратном направлении
—
в направлении
р
→ п.
Рис. 27
В
п-полупроводнике
из-за ухода электронов вблизи границы
остается некомпенсированный
положительный
объемный заряд
неподвижных ионизованных донорных
атомов. В р-полупроводнике
из-за
ухода
дырок вблизи границы
образуется
отрицательный
объемный
заряд
неподвижных
ионизованных акцепторов (рис.
28,
а).
Эти
объемные заряды образуют
у границы
двойной
электрический слой,
поле которого, направленное
от
п-области
к р-области,
препятствует дальнейшему
переходу электронов в направлении
п→
р
и
дырок в направлении
р
→ п.
Если
концентрации
доноров и акцепторов в полупроводниках
п-
и р-типа
одинаковы, то толщины
слоев d1,
и
d2
(рис.
28,
в),
в
которых
локализуются неподвижные заряды, равны
(d1
= d2).
При определенной толщине p-n-перехода наступает равновесное состояние, характеризуемое выравниванием уровней Ферми для обоих полупроводников (рис.28, в). В области р-п-перехода энергетические зоны искривляются, в результате чего возникают потенциальные барьеры как для электронов, так и для дырок. Высота потенциального барьера еφ определяется первоначальной разностью положений уровня Ферми в обоих полупроводниках. Рис. 28 Все энергетические уровни акцепторного полупроводника подняты относительно уровней донорного полупроводника на высоту, равную еφ, причем подъем происходит на толщине двойного слоя d.
Толщина d слоя р-п-перехода в полупроводниках составляет примерно 10 –6 – 10 –7 м, а контактная разность потенциалов – десятые доли вольт. Носители тока способны преодолеть такую разность потенциалов лишь при температуре в несколько тысяч градусов, т е при обычных температурах равновесный контактный слой является запирающим (характеризуется повышенным сопротивлением).
Сопротивление запирающего слоя можно изменить с помощью внешнего электрического поля. Если приложенное к р-п-переходу внешнее электрическое поле направлено от п-полупроводника к р-полупроводнику (рис, 29, а), т.е. совпадает с полем контактного слоя, то оно вызывает движение электронов в п-полупроводнике и дырок в р-полупроводнике от границы р-п-перехода в противоположные стороны. В результате запирающий слой расширится и его сопротивление возрастет. Направление внешнего поля, расширяющего запирающий слой, называется запирающим (обратным). В этом направлении электрический ток, через р-п-переход практически не проходит. Ток в запирающем слое в запирающем направлении образуется лишь за счет неосновных носителей тока (электронов в р-полупроводнике и дырок в п-полупроводнике).
Если приложенное к р-п-переходу внешнее электрическое поле направлено противоположно полю контактного слоя (рис. 29, б), то оно вызывает движение электронов в п-полупроводнике и дырок в р-полупроводнике к границе р-п-перехода навстречу друг другу. В этой области они рекомбинируют, толщина контактного слоя и его сопротивление уменьшаются. Следовательно в этом направлении электрический ток проходит сквозь р-п-переход в направлении от р-полупроводника к п-полупроводнику; оно называется пропускным (прямым).
Рис. 29
Таким образом, р-п-переход (подобно контакту металла с полупроводником) обладает односторонней (вентильной) проводимостью.
На рис. 30 представлена вольт-амперная характеристика р-п-перехода. Как уже указывалось при пропускном (прямом) напряжении внешнее электрическое поле способствует движению основных носителей тока к границе р-п-перехода (см. рис. 29, б). В результате толщина контактного слоя уменьшается. Соответственно уменьшается и сопротивление перехода (тем сильнее, чем больше напряжение), а сила тока становится большой (правая ветвь на рис. 30). Это направление тока называется прямым.
При запирающем (обратном) напряжении внешнее электрическое поле препятствует движению основных носителей тока к границе р-п-перехода (см. рис. 29, а) и способствует движению неосновных носителей тока, концентрация которых в полупроводниках невелика. Это приводит к увеличению толщины контактного слоя, обедненного основными носителями тока. Соответственно увеличивается и сопротивление перехода. Поэтому в данном случае через р-п-переход протекает только небольшой ток (он называется обратным), полностью обусловленный неосновными носителями тока (левая ветвь рис. 30). Быстрое возрастание – этого тока означает пробой контактного слоя и его разрушение. При включении в цепь переменного тока р-п-переходы действуют как выпрямители.
Односторонняя проводимость контактов двух полупроводников (или металла с полупроводником) используется для выпрямления и преобразования переменных токов. Если имеется один электронно-дырочный переход, переход, то его действие аналогично действию двухэлектродной лампы – диода (см. § 105). Поэтому полупроводниковое устройство, содержащее один р-п-переход, называется полупроводниковым (кристаллическим) диодом. Полупроводниковые диоды по конструкции делятся на точечные и плоскостные.
Рис. 30