
- •Предисловие
- •Список сокращений
- •Введение
- •Раздел первый автоматизированное и автоматическое управление нормальными режимами ээс
- •Глава 1. Автоматизированное и автоматическое регулирование частоты и активной мощности
- •1.1. Режимы работы энергосистем и управление ими
- •1.2. О рациональном управлении энергосистемой
- •1.3. Оптовый рынок электрической энергии Украины
- •1.4. Национальная энергетическая компания (нэк) «Укрэнерго» - основа оэс Украины
- •1.5. Основные понятия, характеризующие процессы в ээс. Взаимосвязь частоты и активной мощности
- •1.6. Общее положения автоматизированного и автоматического регулирования частоты и активной мощности
- •1.7. Первичные регуляторы частоты вращения турбин
- •1.8. Характеристики регулирования частоты вращения турбин и электрической части сети
- •1.9. Регулирование частоты первичными регуляторами частоты вращения турбин
- •1.10. Регулирование частоты с помощью вторичных автоматических регуляторов частоты
- •1.11.Автоматическое регулирование перетоков мощности
- •1.12. Математическая формулировка задачи оптимизации режима ээс
- •1.13. Метод Лагранжа
- •1.14 Удельные приросты затрат. Удельные расходы затрат
- •1.15. Реализация решения задачи оптимизации режима ээс с использованием математического пакета MathCad
- •‑ Вектор установленных мощностей эс1, эс2 и эс3, мВт; ‑ активная нагрузка, мВт. Имеем
- •1.16. Комплексное регулирование частоты и перетоков мощности
- •1.17. Управление активной мощностью и частотой оэс
- •Глава 2. Автоматическая частотная разгрузка
- •2.1. Назначение и основные принципы выполнения автоматической частотной разгрузки
- •2.2. Предотвращение ложных отключений потребителей при кратковременных снижениях частоты в энергосистеме
- •2.3. Автоматическое повторное включение после ачр
- •2.4. Схемы ачр и чапв
- •2.5. Отделение собственного расхода тепловых электростанций при снижении частоты в энергосистеме
- •2.6. Автоматический пуск гидрогенераторов при снижении частоты в энергосистеме
- •Глава 3. Автоматическое включение синхронных генераторов на параллельную работу
- •3.1. Способы синхронизации
- •3.2. Точная синхронизация
- •3.3. Самосинхронизация
- •3.4. Устройства автоматического включения генераторов на параллельную работу
- •3.5. Синхронизатор с постоянным временем опережения типа убас
- •3.6 Автоматический синхронизатор типа са-1
- •3.7. Устройство полуавтоматической самосинхронизации
- •Раздел второй противоаварийное автоматическое управление в энергосистемах
- •Глава 4. Задачи противоаварийного автоматического управления ээс
- •4.1. Возмущающие воздействия на электроэнергетические системы
- •4.2. Противоаварийные управляющие воздействия
- •4.3. Назначение и классификация устройств противоаварийной автоматики
- •Глава 5. Средства повышения статической и динамической устойчивости
- •5.1. Средства повышения статической устойчивости
- •5.2. Средства повышения динамической устойчивости
- •5.3. Основные положения Руководящих указаний по устойчивости энергосистем
- •Глава 6. Структура устройств па для предотвращения нарушения устойчивости.
- •6.1. Общие принципы выполнения систем па.
- •6.2. Децентрализованный комплекс апну узла мощной электростанции
- •6.3. Децентрализованный комплекс апну межсистемной связи
- •6.4. Структурное построение централизованного комплекса апну
- •6.5. Варианты структурных схем централизованных комплексов апну
- •6.4. Общие принципы выполнения централизованных систем па
- •Глава 7. Режимные принципы па, предотвращающей нарушение устойчивости
- •7.1. Особенности апну
- •7.2. Предотвращение нарушений устойчивости в энергообъединении простейшей структуры
- •7.3. Области статической устойчивости энергосистемы
- •7.4. Процедура расчета предельного режима без учета самораскачивания
- •Переходным процессом в схеме (см. Рис. 7.2) соответствует система уравнений
- •7.5. Использование результатов расчета предельного режима
- •Глава 8. Алгоритмы централизованных комплексов па
- •8.1. Разработка Энергосетьпроекта (алгоритм 1)
- •8.2. Разработка ниипт (алгоритм 2)
- •8.3. Вариант решения централизованного комплекса апну с дозировкой управляющих воздействующих по алгоритму 1*)
- •Глава 9. Асинхронный режим и устройства автоматической ликвидации асинхронного режима
- •9.1. Общие положения
- •9.2. Способы ликвидации асинхронного режима
- •9.3. Принципы выполнения устройств автоматической ликвидации асинхронного режима
- •9.4. Устройство алар, разработанное Энергосетьпроектом
- •9.5. Способ приближенного определения положения эцк
- •Глава 10. Устройства автоматического ограничения повышения напряжения
- •10.1. Причины возникновения перенапряжений
- •10.2. Устройство автоматического ограничения повышения напряжения на линии
- •10.3. Автоматика шунтирующего реактора с искровым промежутком
- •Глава 11 Микропроцессорные автоматизированные и автоматические
- •11.2. Микропроцессорная автоматизированная система управления гэс
- •11.3. Микропроцессорная автоматизированная система управления тэс
- •11.4. Цифровая автоматическая система управления частотой и активной мощностью ээс
- •Глава 12. Особенности управляющих устройств и систем противоаварийной автоматики
- •12.1. Основные функции систем противоаварийной
- •Автоматики на основе современных оценок
- •12.2. Функционирование и развитие апну
- •Список литературы
7.3. Области статической устойчивости энергосистемы
Областью статической устойчивости энергосистемы называется множество ее режимов, в которых обеспечивается статическая устойчивость при определенном составе генераторов и фиксированной схеме электрической сети. Поверхность, ограничивающую множество устойчивых режимов, называют границей области статической устойчивости.
Области устойчивости строятся в координатах параметров, влияющих на устойчивость режима. Такими наиболее важными параметрами являются активные мощности генераторов, нагрузки в узлах схемы энергосистемы, напряжения генераторов; чаще всего в качестве таких параметров используются перетоки по линиям электропередачи в тех или иных сечениях энергосистемы.
Пользоваться областями устойчивости в многомерном пространстве практически невозможно; поэтому следует стремиться к уменьшению количества координат. Для уменьшения числа независимых координат учитывают различную степень влияния параметров на устойчивость режима, т.е. используют те же положения и методы, что и при эквивалентировании схем и режимов энергосистем.
Определение границ области статической устойчивости выполняется с помощью расчетов установившихся режимов, начиная с заведомо устойчивого, при таком изменении параметров, которое приводит к предельному режиму. В реальной энергосистеме утяжеление режима по активной мощности, вызванное любой причиной (командой диспетчера или возникшее самопроизвольно – из-за изменения нагрузки или возникновения аварийного небаланса мощности), сопровождается некоторым изменением частоты. Отклонение частоты в свою очередь – приводит к изменению перетоков мощности вследствие изменения мощности нагрузки (в соответствии с ее регулирующим эффектом по частоте) и изменения мощности генераторов (в соответствии со статизмом регуляторов скорости турбин). Попытка учета этих факторов в их взаимодействии приводит к необходимости подробного моделирования процессов при изменении частоты в системе и выполнения весьма трудоемких расчетов по специальным программам. Все это крайне усложнило бы методику выполнения расчетов статической устойчивости, недопустимо увеличило бы объем расчетов. Поэтому к расчетам утяжеления режимов с учетом процессов при изменении частоты прибегают только тогда, когда в этом есть действительная необходимость.
Области устойчивости строятся в координатах только активных мощностей, когда напряжения в энергосистеме при утяжелениях ее режимов изменяются мало или однозначно определяются заданными перетоками мощности. Если же вариации напряжения, возможные в различных режимах, приводят к существенным изменениям предельных мощностей, то напряжения в контролируемых точках включаются в число учитываемых координат или строится несколько областей устойчивости для разных уровней напряжения.
Расчеты статической устойчивости в послеаварийных режимах, вызванных возникновением значительных аварийных небалансов мощности, могут во многих случаях также производиться при неизменной частоте. При этом (если это необходимо) влияние изменения частоты на потокораспределение может быть учтено приближенно путем принудительного изменения балансов мощностей частей энергосистемы, разделяемых рассматриваемым сечением, на величину, пропорциональную крутизне их частотных характеристик.
При достаточных резервах реактивной мощности почти безразлично, осуществляется ли утяжеление режима перераспределением генерации или нагрузки. Для таких случаев рекомендована следующая процедура:
-
увеличение генерации в одной части энергосистемы с соответствующим (равным с точностью до изменения потерь) уменьшением генерации в другой части;
-
если на загружаемых генераторах достигнуты ограничения по располагаемой активной мощности, то дальнейшее утяжеление осуществляется уменьшением нагрузки в той же части энергосистемы;
-
если генераторы разгружены до практически реализуемого минимума, то осуществляется увеличение нагрузки.
При изменениях нагрузки предполагается, что отношение Рн/Qн остается неизменным, что соответствует наличию однотипных приемников.
Если при утяжелении режима реактивные мощности генераторов достигают ограничений по Qг min, Qг max, то два указанных способа утяжеления режима - изменением Рг и Рн - становятся неравнозначными. Увеличению активной нагрузки соответствует рост потребляемой реактивной мощности; это приводит к снижению напряжения. При том же направлении утяжеления, но с уменьшением активной мощности генераторов, возрастает их располагаемая реактивная мощность, что способствует повышению напряжения. Следовательно, во втором случае значения Рпр могут оказаться выше.
Запас статической устойчивости для данного режима работы энергосистемы определяется его близостью к границе области устойчивости, которая может быть обусловлена апериодическим или колебательным нарушением устойчивости. Запас статической устойчивости характеризуется коэффициентами запаса по активной мощности в сечениях энергосистемы и по напряжению в узлах нагрузки. Коэффициент запаса статической устойчивости по активной мощности определяется для всех сечений схемы энергосистемы, в которых необходима количественная проверка достаточности запаса. Неучет какого-либо из опасных сечений может привести к нарушению устойчивости энергосистемы при достижении перетоком в этом неконтролируемом сечении предельного значения.
Значение максимально
допустимого перетока
,
при котором в контролируемом сечении
обеспечивается требуемый минимальный
запас статической устойчивости Кр,
может быть определено исходя из (6.1):
. (7.8)
Запас статической устойчивости по напряжению вводится для обеспечения статической устойчивости нагрузки. Для определения запаса по напряжению какого-либо узла нагрузки в данном режиме напряжение U в этом режиме сравнивается с критическим напряжением в том же узле Uкр по выражению (6.2). Значение критического напряжения определяется свойствами нагрузки, главным образом загрузкой двигателей и протяженностью линий электропередачи, входящих в узел нагрузки. При определении коэффициента запаса по напряжению можно полагать, что критическое напряжение в узлах нагрузки при номинальных напряжениях до 110-220 кВ составляет 75% напряжения в рассматриваемом узле при нормальном режиме энергосистемы в том же сезоне и при том же времени суток, для которых определяется КU.
Область максимально допустимых режимов, рассчитанная для требуемого значения Кр, может иметь дополнительные эксплуатационные ограничения по токам, уровням напряжения и пр. Особое внимание обращается на токи генераторов, поскольку утяжеление режима вплоть до предельного выполняется при предельно допустимых кратностях перегрузки по токам статора и ротора, допустимых для кратковременных, обычно двадцатиминутных режимов. Максимально допустимые режимы рассматриваются как длительные.