
- •Строение белка. Уровни структурной организации молекулы белка.
- •Строение, размер и форма белковой молекулы, функции белков.
- •Денатурация, причины и признаки, использование в медицине.
- •Ферменты. Особенности ферментативного катализа. Строение и структура ферментов.
- •Полиферментные комплексы, метаболоны.
- •Механизм действия ферментов. Этапы ферментативного катализа.
- •Факторы, определяющие активность ферментов [e], [s], [p], Km. Влияние pH, [p], tº, ионной силы на активность ферментов.
- •Изостерическая и аллостерическая регуляция.
- •Николаев а. Я. Биологическая химия. М.: Высшая школа, 1989. С. 52–92.
- •Марри р. И др. Биохимия человека. М.: Мир, 1993. Т. 1. С. 63–75.
- •Филиппович ю. Б. Основы биохимии. М.: Высшая школа, 1993. С. 105–144.
- •1. Мультимедийная презентация.
- •Механизмы и роль аллостерической регуляции. Характеристика аллостерических ферментов. Виды ингибирования (обратимое, необратимое, конкурентное, неконкурентное, бесконкурентное).
- •Изоферменты, их природа, биологическая роль, строение лдг.
- •Изменение активности ферментов в онтогенезе.
- •Николаев а. Я. Биологическая химия. М.: Высшая школа, 1989. С. 52–92.
- •Марри р. И др. Биохимия человека. М.: Мир, 1993. Т. 1. С. 63–75.
- •Филиппович ю. Б. Основы биохимии. М.: Высшая школа, 1993. С. 105–144.
- •1. Мультимедийная презентация.
- •Локализация ферментов в клетке, органоспецифические и маркерные ферменты.
- •Качественное обнаружение и количественное определение активности. Единицы активности (мe, катал). Удельная активность. Число оборотов ферментов.
- •Сопряженные ферментные системы их применение. Номенклатура, классификация ферментов (тривиальная, рациональная, систематическая). Принципы классификации.
- •Медицинская энзимология. Основные направления Применение ферментов в лабораторной диагностике, производственной практике и биотехнологии.
- •Энзимопатии. Патогенез энзимопатий. Энзимодиагностика, цель, задачи. Типы ферментов плазмы крови.
- •Энзимотерапия. Примеры. Иммобилизованные ферменты, липосомы, тени эритроцитов, вирусные векторы. Биотехнология.
- •История развития учения о биологическом окислении
- •Современные представления о бо. Основные этапы бо. Строение атф, природа макроэргичности.
- •Митохондрия. Строение, функции, сравнительная характеристика мембран митохондрий. Характеристика ферментов мембран, межмембранного пространства, мx матрикса.
- •Цтк, история открытия, реакции, ферменты, коферменты, субстраты. Биологическая роль, регуляция цтк. Метаболоны цтк.
- •1. Энергетическая функция.
- •2. Пластическая функция.
- •3. Регуляторная.
- •Строение дыхательной цепи (дц), комплексы, ингибиторы. Механизм работы. Пункты сопряжения, величина овп компонентов дц. Коэффициент р/о, его значение.
- •Свободное и разобщенное дыхание. Теории сопряжения оф.
- •Структура и функция протонной атф-азы. Механизм разобщения.
- •Оф (снятие pH и ). Механизмы термогенеза. Роль бурой жировой ткани.
- •Пути потребления o2 в организме. Характеристика микросомальной дц, ее сравнение с митохондриальной. Характеристика цитохромов p450, их функция.
- •1. Сходства: а) они имеют одинаковые начало и конец и одинаковую суммарную разность потенциалов (а значит одинаковый градиент энергии в начале и конце);
- •2. Различия: а) по локализации;
- •Антиоксидантная защита: ферментная и неферментная.
- •1. Мультимедийная презентация.
- •1. Мультимедийная презентация.
1. Энергетическая функция.
ЦТК - конечный этап БО, в котором окисляются унифицированные соединения различного происхождения.
2. Пластическая функция.
Поскольку ЦТК «питается» субстратами различного происхождения, то он может быть источником углеродных скелетов для различных веществ.
ЩУК Цитрат синтез ЖК, т. е. избыток углеводов депонируется в виде нейтрального жира.
Сукцинил КоА синтез ГЛУ, АРГ, ПРО, ГИС.
-кетоглутарат синтез гема (Hb, цитохромы, каталаза, пероксидаза).
ГНГ (образование Гл из неуглеводных компонентов).
3. Регуляторная.
Перекачка субстратов из одного в другой.
Регуляция ЦТК.
ЦТК связан с предшествующими стадиями энергетического обмена (гликолиз, окисление ЖК и АК), поэтому механизмы регуляции этих процессов будут справедливы и для ЦТК:
1) ретроингибирование; 2) путем изменения концентрации субстрата на входе ЦТК; 3) аллостерическаярегуляция (с помощью НАД, НАДН2, АТФ); 4) ионная (pH, [Ca++]).
Так как цикл Кребса начинается со стадии ЩУК + ацетил КоА, то эти метаболиты и управляют интенсивностью ЦТК. Первым регуляторным фактором является концентрация ЩУК, которая в основном образуется из ПВК, ацетил КоА в принципе тоже:
+CO2 -CO2
ЩУК <----- ПВК ------> ацетил КоА
+ГТФ
ПВК же образуется из углеводов (Гл), поэтому при диабете или углеводном голодании наблюдается недостаток ПВК, а значит и ЩУК и ЦТК блокируются. Ацетил-КоА не является лимитирующим субстратом, т. к. в основном образуется при окислении ЖК.
Но в то же время ЩУК - конкурентный ингибитор сукцинатдегидрогеназы, поэтому при избытке ЩУК, ЦТК блокируется на 6 стадии (так называемое «щуковое торможение»). Это торможение можно убрать ГЛУ, который переаминирует ЩУК в АСП.
Второй регуляторный фактор - концентрация НАД и НАДН2. В живых системах концентрация НАД + НАДН2 = const. Любые факторы, ведущие к увеличению НАД.Н2 (гипоксия, алкогольная интоксик5ация) и дефициту НАД+ блокирует ЦТК. Следовательно увеличение концентрации НАД+ при активной работе ДЦ стимулирует ЦТК.
Так как АТФ является косвенно конечным продуктом ЦТК, то ее избыток блокирует ЦТК, а значит АДФ стимулирует ЦТК. (АДФ рассматривается как аллостерический активатор изоцитратдегидрогеназы).
Стимулятором ЦТК является также кислород, потому что он стимулирует распад АТФ.
Нормальная концентрация Ca2+ в клетке 10-7 моль. При увеличении концентрации кальция до 10-6 моль активируются дегидрогеназные реакции: пируватДГ, изоцитратДГ, альфа-КГДГ, а значит и ЦТК.
Цикл Кребса активируется при сердечной недостаточности. Это объясняется тем, что миокард не может самостоятельно убрать избыток Ca2+ и эту роль берут на себя митохондрии, возрастает потребность в кислороде.
Заведующий кафедрой биологической химии, д.м.н., проф. |
Грицук А. И. |
___________ |
21.10.2006
Министерство здравоохранения Республики Беларусь
УО «Гомельский государственный медицинский университет»
Кафедра биологической химии
Обсуждено на заседании кафедры (МК или ЦУНМС)
Протокол № _________________200__года
ЛЕКЦИЯ по биологической химии
наименование дисциплины
для студентов _2__ курса лечебного факультета
Тема Биологическое окисление 2. Тканевое дыхание. Окислительное фосфорилирование.
Время 90 мин.
Учебные и воспитательные цели:
Дать представление:
-
О строении дыхательной цепи (ДЦ), ингибиторах; механизмах работы ДЦ; пунктах сопряжения, величинах ОВП компонентов ДЦ. О коэффициенте Р/О, его значении.
-
О свободном и разобщенном дыхании. О теориях сопряжения ОФ.
-
О механизме генерации Н+.
-
О структуре и функциях протонной АТФ-азы; о механизме разобщения.
-
Об окислительдном фосфорилировании (pH и ); о механизмах термогенеза, роли бурой жировой ткани.
-
О роли энергетического обмена; Путях утилизации Н+ и АТФ. О прикладных аспектах биоэнергетики.
-
О путях потребления O2 в организме (митохондриальный, микросомальный, перекисный). О характеристике микросомальной ДЦ, в сравнении с митохондриальной. О характеристике цитохромаP450, функции.
-
О перекисном окисление. О механизме образования активных форм кислорода O2-, O2, O2 . О роли перекисных процессов в норме и при патологии. О перекисном окислении липидов (ПОЛ): (НЭЖК → R → диеновые коньюгаты → гидроперекиси → МДА). О способах оценки активности ПОЛ.
-
Об антиоксидантной защите: ферментной и неферментной. О характеристиках СОД, каталазы, глютатионпероксидазы, GSH-редуктазы, NADPH-воспроизводящих систем. О неферментных АОС: витаминах Е, А, С, каротиноидах, гистидине, кортикостероидах, билирубине, мочевине и др.
ЛИТЕРАТУРА
-
Березов Т. Т., Коровкин Б. Ф. Биологическая химия. М.: Медицина, 1990. С. 213–220; 1998. С. 305–317.
-
Николаев А. Я. Биологическая химия. М.: Высшая школа, 1989. С. 199–221.
Дополнительная
-
Филиппович Ю. Б. Основы биохимии. М.: Высшая школа, 1993. С. 403–438.
-
Марри Р. и др. Биохимия человека. М.: Мир, 1993. Т. 1. С. 111–139.
-
Ленинджер А. Основы биохимии. М.: Мир, 1985. Т. 2. С. 403–438, 508–550.
-
Албертс Б. и др., Молекулярная биология клетки. М.: Мир, 1994. Т. 1. С. 430–459.
-
Скулачев В.П. Энергетика биологических мембран. М.: Наука. 1989.
МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ
1. Мультимедийная презентация.
РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ
№ п/п |
Перечень учебных вопросов |
Количество выделяемого времени в минутах |
|
Строение дыхательной цепи (ДЦ), ее комплексы, ингибиторы. Механизм работы ДЦ. Пункты сопряжения, величина ОВП компонентов ДЦ. Коэффициент Р/О, его значение. |
10 |
|
Свободное и разобщенное дыхание. Теории сопряжения ОФ (химическая, конформационная, хемиосмотическая – П. Митчелла). |
10 |
|
Механизм генерации Н+, его компоненты, стехиометрия Н+/е. |
10 |
|
Структура и функция протонной АТФ-азы. Механизм разобщения. |
10 |
|
ОФ (снятие pH и ). Механизмы термогенеза. Роль бурой жировой ткани. |
10 |
|
Основополагающая роль энергетического обмена. Пути утилизации Н+ и АТФ. Прикладные аспекты биоэнергетики. |
10 |
|
Пути потребления O2 в организме (митохондриальный, микросомальный, перекисный). Характеристика микросомальной ДЦ, ее сравнение с митохондриальной. Характеристика цитохромов P450, их функция. |
10 |
|
Перекисное окисление. Механизм образования активных форм кислорода O2-, O2, O2 . Роль перекисных процессов в норме и при патологии. Общее представление о ПОЛ (НЭЖК → R → диеновые коньюгаты → гидроперекиси → МДА). Способы оценки активности ПОЛ. |
10 |
|
Антиоксидантная защита: ферментная и неферментная. Характеристика СОД, каталазы, глютатионпероксидазы, GSH-редуктазы, NADPH-воспроизводящих систем. Неферментные АОС: витамины Е, А, С, каротиноиды, гистидин, кортикостероиды, билирубин, мочевина и др. |
10 |
Всего 90 мин