
- •Тема 1. Лекция №1. Информатика как единство науки и технологии – 1 час
- •История развития вычислительной техники
- •Основные понятия теории информации
- •I. Решение логических задач средствами алгебры логики
- •Тема 2. Основы дискретной математики. Лекция № 4. Как решать логические задачи? (1час)
- •Постановка задачи
- •Решение
- •Тема 3. Основные понятия архитектуры эвм.
- •Способы представления информации. Системы счисления
- •Правила перевода чисел из одной системы счисления в другую
- •Перевод чисел из одной системы счисления в другую с использованием полиномов.
- •Перевод из двоичной системы счисления в десятичную
- •Перевод чисел из одной системы счисления в другую с помощью деления целой части и умножения дробной части.
- •Перевод дробной части числа.
- •Тема 3. Основные понятия архитектуры эвм. Лекция № 6. Аппаратное и программное обеспечение (1 час) Аппаратные средства эвм
- •1 Основные устройства компьютера, их функции и взаимосвязь.
- •2 Внешняя память компьютера. Различные типы носителей информации, их характеристики (информационная емкость, быстродействие и т.Д.)
- •Обобщенная таблица «внешняя память эвм»
- •3 Магистрально-модульный принцип построения компьютера.
- •4 Основные характеристики компьютера (разрядность магистрали, объем оперативной и внешней памяти, тактовая частота и др.)
- •Программные средства эвм
- •Тема 3. Основные понятия архитектуры эвм. Лекции № 7-8 (2 часа). Способы представления информации в эвм. Системы счисления
- •Правила перевода чисел из одной системы счисления в другую
- •Перевод чисел из одной системы счисления в другую с использованием полиномов.
- •Перевод из двоичной системы счисления в десятичную
- •Перевод чисел из одной системы счисления в другую с помощью деления целой части и умножения дробной части.
- •Перевод дробной части числа.
- •Тема 4. Алгоритмические решение задач. Лекция №9. Алгоритмические решение задач, анализ алгоритмической сложности. ( 1 час) Алгоритмическая сложность задачи. Понятие сложности задач
- •2. Классификация задач по сложности
- •Способы записи алгоритма.
- •Основные алгоритмические конструкции
- •Тема 4. Алгоритмические решение задач. Лекция №10. Алгоритмы. Способы записи алгоритма. (1час) Понятие алгоритма. Свойства алгоритмов. Возможность автоматизации деятельности человека
- •Свойства алгоритма
- •Формы записи
- •Возможность автоматизации деятельности человека
- •Тема 4. Алгоритмические решение задач. Лекция №11. Блок-схемы, разработка алгоритма, примеры. (1час)
- •Задача на построение блок-схемы простого алгоритма, записанного на естественном языке.
- •Постановка задачи
- •Математическая модель
- •Технология решения
- •Постановка задачи
- •Модель решения
- •Язык ассемблера
- •Структурное программирование
- •Парадигмы программирования
- •Структурное программирование
- •Функциональное и логическое программирование
- •Объектно-ориентированное программирование
- •Тема 6. Основы операционных систем и сетей. Лекция №13. Программное обеспечение компьютера (1час)
- •Тема 6. Основы операционных систем и сетей. Лекция №14. Операционная система. Файловые системы семейства Windows. (1час)
- •Управление работой операционных систем Обзор команд управления
- •Операционные системы семейства ms-dos
- •Операционные системы семейства windows-9х
- •Тема 6. Основы операционных систем и сетей. Лекция №15. Текстовый редактор. Назначение и основные функции. (1час)
- •Основные функции
- •Тема 6. Основы операционных систем и сетей. Лекция №16. Создание математических формул (1час)
- •Цель работы:
- •2. Краткое введение в теоретическую часть.
- •Тема 6. Основы операционных систем и сетей. Лекция №17. Электронные таблицы. Назначение и основные функции. (1час)
- •Области применения электронных таблиц
- •Основные функции электронных таблиц
- •Преимущества использования эт при решении задач
- •Cостав электронной таблицы
- •Модель ячейки
- •Тема 6. Основы операционных систем и сетей. Лекция №18. Мастер функций. Текстовые функции. (1час) Мастер функций. Текстовые функции.
- •1. Цель.
- •3. Задания:
- •Список сотрудников
- •4. Методические указания:
- •5. Контрольные вопросы:
- •Тема 6. Основы операционных систем и сетей. Лекция №19. Excel_ Исследование мастера функций_ Логическая функция_ Если (1час) Тема Excel_ Исследование мастера функций_ Логическая функция_ Если
- •1. Цель работы:
- •2. Теоретические основы:
- •3. Задание.
- •4. Методические указания.
- •5. Контрольные вопросы.
- •Тема 6. Основы операционных систем и сетей. Лекция №20. Базы данных. Назначение и основные функции (1час)
- •Контрольные вопросы
- •Тема 6. Основы операционных систем и сетей. Лекция №22 Microsoft Access. Запросы (1час)
- •1 Теоретическая часть
- •1.1 Основные сведения о запросах
- •1.2.1 Запросы на выборку и их использование
- •1.2.2 Запросы с параметрами и их использование
- •1.2.3 Перекрестные запросы и их использование
- •1.2.4 Запросы на изменение и их использование
- •2. Создание запроса
- •3. Практическая часть
- •3.1 Создание простого запроса на выборку с помощью мастера
- •2.2 Создание простого запроса на выборку самостоятельно в режиме конструктора.
- •Тема 6. Основы операционных систем и сетей. Лекция №23. Access_ Поиск и отбор данных (2час) Тема Access_ Поиск и отбор данных
- •Цель. Ознакомление с командами поиска, фильтрации и сортировки. Применение и разработка фильтров для объектов ms Access. Простой поиск
- •Сортировка записей по одному полю
- •Обычный фильтр
- •Расширенный фильтр
- •1.1 Общие сведения о формах
- •1.2 Разделы формы
- •1.3 Создание формы
- •1.4 Общие сведения об элементах управления
- •2 Практическая часть
- •2.1 Создание формы для ввода данных.
- •3 Контрольные вопросы.
- •Тема 7. Графика и интернет. Лекция №25 Internet. Сeти (2час)
- •Internet. Сети.
- •Характеристики процессоров
- •Тема 7. Графика и интернет. Лекция № Архиваторы. Антивирусные программы (1час)
- •Архиватор zip (pkzip, pkunzip, zip2exe, pkzipfix)
- •Архиватор arj
- •Архиватор rar.
- •Компьютерные вирусы.
- •Классификация компьютерных вирусов
1 Основные устройства компьютера, их функции и взаимосвязь.
Архитектура ЭВМ – это общее описание структуры и функций ЭВМ, ее ресурсов.
Ресурсы ЭВМ – средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный интервал времени. К ресурсам ЭВМ традиционно относят объем доступной памяти, процессорное время и др.
Архитектура первых ЭВМ строилась согласно принципам фон Неймана (сороковые годы ХХ века).
Схема взаимодействия устройств таких ЭВМ представлена на рис. 1.
Рис. 1. Схема взаимодействий устройств компьютера согласно архитектуре фон Неймана
Обозначения:
УУ – устройство управления
АЛУ – арифметико-логическое устройство
Устройства ввода служат для занесения в оперативную память ЭВМ как текста программы, так и всех исходных данных.
В настоящее время разработан ряд типов устройств ввода. Если информация цифровая и буквенная, то для ввода используют клавиатуру. Скорость ввода информации с помощью клавиатуры ограничена возможностями человека – примерно 200 символов в минуту.
Если необходимо ввести графическую информацию, поместить в память какую-нибудь линию, используют панели графического ввода с контактными карандашами или световые перья. Имеются и устройства ввода речевой информации.
Раньше широко использовались такие устройства ввода, в которых информация считывалась с перфокарты или с перфоленты. Такой способ громоздок, так как сначала всю информацию необходимо «набить» на перфокарту или перфоленту и лишь затем использовать в ЭВМ. Устройства ввода с перфокарты и с перфоленты работали с такими скоростями: с перфоленты в среднем за одну секунду считывалось 100 символов; с перфокарты считывалось за одну минуту до 700 перфокарт.
Среди устройств вывода довольно широко применяется принтеры (матричные, струйные, лазерные), плоттеры (графопостроители) и др. Результат работы ПК может быть показан на экране дисплея.
Устройство управления (УУ) обеспечивает координацию действий всех узлов машины в соответствии с программой.
В состав арифметико-логического устройства (АЛУ) входят все операции арифметики и ряд других операций (сравнения на равенство и неравенство, операции алгебры логики, команды условного перехода и т.п.).
В процессоре осуществляются все арифметические и логические операции над закодированной информацией. Процессор – устройство компьютера, осуществляющее обработку информации.
Оперативное запоминающее устройство (ОЗУ) служит для хранения выполняемой программы и основной части обрабатываемой информации. ОЗУ состоит из ячеек, каждая из которых имеет свой номер (адрес). ОЗУ работает под непосредственным управлением микропроцессора, все данные для которого непосредственно поступают только из ОЗУ. Оно обеспечивает хранение информации лишь в течение сеанса работы с ПК – после выключения компьютера из сети данные, хранимые в ОЗУ, теряются безвозвратно, то есть ОЗУ – энергозависимое устройство.
Постоянное запоминающее устройство (ПЗУ), в современной терминологии RОМ (Read Only Memory). Во многих ПК ПЗУ реализовано отдельной микросхемой, в которой при изготовлении ПК «зашиты» основные команды ввода/вывода, осуществляющие начальное взаимодействие аппаратного и программного обеспечения ПК. Этот вид памяти доступен лишь для чтения хранящейся в ней информации. После выключения питания компьютера, информация в ПЗУ сохраняется, то есть ПЗУ – энергоНЕзависимое устройство.
Внешнее запоминающее устройство (ВЗУ) предназначено для долговременного хранения информации и характеризуются большим объемом памяти и низким по сравнению с ОЗУ быстродействием.
К подобным устройствам относятся:
накопители на гибких магнитных дисках, предназначенные для чтения/записи информации на гибкие диски (дискеты);
накопители на жестких магнитных дисках или винчестеры;
дисководы для работы с лазерными компакт-дисками;
стримеры, предназначенные чтения/записи информации на магнитные ленты;
магнито-оптические дисководы для работы с магнито-оптическими дисками.
Каждое из внешних устройств с помощью каналов связи подключается к устройству управления и процессору ПК.
Архитектура ЭВМ постоянно совершенствуется. На смену большим ЭВМ пришли мини-ЭВМ, а затем и персональные компьютеры (ПК). Сохраняя общие принципы архитектуры, каждая новая модель компьютеров обладает определенными отличительными признаками.
В состав современного персонального компьютера входит:
- системный блок;
- клавиатура;
- монитор (см. рис. 2).
Рис. 2. Базовый комплект персонального компьютера
Кроме того, в состав ПК входят манипулятор “мышь”, принтер, джойстик, модем, сканер.
Архитектура ПК, основанная на магистрально-модульном принципе организации обмена информации, включает центральные (процессор, память) и периферийные устройства, которые соединены между собой и обмениваются информацией посредством информационной магистрали – системной шины. Центральные устройства подсоединены к шине непосредственно, а периферийные – через устройства сопряжения (контроллеры или адаптеры).
Рис. 3. Схема архитектуры ПК, основанной на магистрально-модульном принципе организации обмена информации.
НГМД – накопитель на гибких магнитных дисках (дисковод флоппи-диска)
НЖМД – накопитель на жестких магнитных дисках (винчестер)
С точки зрения аппаратурной реализации основу компьютера составляет находящаяся в системном блоке системная (“материнская”) плата, на которой размещены основные (центральные) устройства компьютера – процессор и память (оперативная и постоянная), соединенные между собой системной шиной (информационная магистраль), к которой подсоединяются контроллеры всех периферийных устройств, подключаемых к компьютеру (см. рис. 4). При этом периферийными считаются и клавиатура, и монитор, и винчестер, и дисководы, и модем, и манипуляторы, и сканер, и видеокамера и т.д. Дополнительные устройства, позволяющие пользователю компьютера слушать музыку, смотреть видеоролики и др., подключаются через специальные платы расширения. Невозможна работа компьютера и без таких вспомогательных (с точки зрения процесса обработки информации) устройств, как блок питания, система охлаждения и пр.
Рис. 4. Схема аппаратурной части компьютера
Примечание. Адаптер монитора (видеоадаптер) часто также располагается на системной плате.
Пользователей устройство ПК интересует больше всего с точки зрения того, как организуются информационные процессы, а именно, ввод, хранение, передача, обработка, вывод информации, и какие устройства их обеспечивают.
Как правило, каждое устройство имеет определенное назначение и относится к тому или иному классу. Все устройства даже одного класса отличаются друг от друга. Например, монитор, может быть большим или маленьким по размеру, цветным или монохромным, плоским или объемным, с защищенным экраном или без, а также “био”, “от DDD”, “от SAMSUNG”, на жидких кристаллах или основан на самой новейшей технологии.
Устройства компьютера можно охарактеризовать по следующим признакам:
класс устройств (название);
назначение;
принципы работы;
основные технические характеристики (потребительские свойства);
особенности.
Изменение технических характеристик устройств – это улучшение их потребительских свойств.
Кроме того, любое устройство без программной поддержки - это просто “железо”. Чтобы оно работало нужны специальные программы (для управления каждым устройством - своя). Такие программы называются “драйверами” (от английского drive - приводить в движение, управлять).
Компьютер предназначен для обработки самой различной информации. Большинство устройств компьютера “работают” со всеми видами информации, но есть и “специализирующиеся” на конкретных видах (текстовой, числовой, графической, звуковой, управляющей).