
- •Тема 1. Лекция №1. Информатика как единство науки и технологии – 1 час
- •История развития вычислительной техники
- •Основные понятия теории информации
- •I. Решение логических задач средствами алгебры логики
- •Тема 2. Основы дискретной математики. Лекция № 4. Как решать логические задачи? (1час)
- •Постановка задачи
- •Решение
- •Тема 3. Основные понятия архитектуры эвм.
- •Способы представления информации. Системы счисления
- •Правила перевода чисел из одной системы счисления в другую
- •Перевод чисел из одной системы счисления в другую с использованием полиномов.
- •Перевод из двоичной системы счисления в десятичную
- •Перевод чисел из одной системы счисления в другую с помощью деления целой части и умножения дробной части.
- •Перевод дробной части числа.
- •Тема 3. Основные понятия архитектуры эвм. Лекция № 6. Аппаратное и программное обеспечение (1 час) Аппаратные средства эвм
- •1 Основные устройства компьютера, их функции и взаимосвязь.
- •2 Внешняя память компьютера. Различные типы носителей информации, их характеристики (информационная емкость, быстродействие и т.Д.)
- •Обобщенная таблица «внешняя память эвм»
- •3 Магистрально-модульный принцип построения компьютера.
- •4 Основные характеристики компьютера (разрядность магистрали, объем оперативной и внешней памяти, тактовая частота и др.)
- •Программные средства эвм
- •Тема 3. Основные понятия архитектуры эвм. Лекции № 7-8 (2 часа). Способы представления информации в эвм. Системы счисления
- •Правила перевода чисел из одной системы счисления в другую
- •Перевод чисел из одной системы счисления в другую с использованием полиномов.
- •Перевод из двоичной системы счисления в десятичную
- •Перевод чисел из одной системы счисления в другую с помощью деления целой части и умножения дробной части.
- •Перевод дробной части числа.
- •Тема 4. Алгоритмические решение задач. Лекция №9. Алгоритмические решение задач, анализ алгоритмической сложности. ( 1 час) Алгоритмическая сложность задачи. Понятие сложности задач
- •2. Классификация задач по сложности
- •Способы записи алгоритма.
- •Основные алгоритмические конструкции
- •Тема 4. Алгоритмические решение задач. Лекция №10. Алгоритмы. Способы записи алгоритма. (1час) Понятие алгоритма. Свойства алгоритмов. Возможность автоматизации деятельности человека
- •Свойства алгоритма
- •Формы записи
- •Возможность автоматизации деятельности человека
- •Тема 4. Алгоритмические решение задач. Лекция №11. Блок-схемы, разработка алгоритма, примеры. (1час)
- •Задача на построение блок-схемы простого алгоритма, записанного на естественном языке.
- •Постановка задачи
- •Математическая модель
- •Технология решения
- •Постановка задачи
- •Модель решения
- •Язык ассемблера
- •Структурное программирование
- •Парадигмы программирования
- •Структурное программирование
- •Функциональное и логическое программирование
- •Объектно-ориентированное программирование
- •Тема 6. Основы операционных систем и сетей. Лекция №13. Программное обеспечение компьютера (1час)
- •Тема 6. Основы операционных систем и сетей. Лекция №14. Операционная система. Файловые системы семейства Windows. (1час)
- •Управление работой операционных систем Обзор команд управления
- •Операционные системы семейства ms-dos
- •Операционные системы семейства windows-9х
- •Тема 6. Основы операционных систем и сетей. Лекция №15. Текстовый редактор. Назначение и основные функции. (1час)
- •Основные функции
- •Тема 6. Основы операционных систем и сетей. Лекция №16. Создание математических формул (1час)
- •Цель работы:
- •2. Краткое введение в теоретическую часть.
- •Тема 6. Основы операционных систем и сетей. Лекция №17. Электронные таблицы. Назначение и основные функции. (1час)
- •Области применения электронных таблиц
- •Основные функции электронных таблиц
- •Преимущества использования эт при решении задач
- •Cостав электронной таблицы
- •Модель ячейки
- •Тема 6. Основы операционных систем и сетей. Лекция №18. Мастер функций. Текстовые функции. (1час) Мастер функций. Текстовые функции.
- •1. Цель.
- •3. Задания:
- •Список сотрудников
- •4. Методические указания:
- •5. Контрольные вопросы:
- •Тема 6. Основы операционных систем и сетей. Лекция №19. Excel_ Исследование мастера функций_ Логическая функция_ Если (1час) Тема Excel_ Исследование мастера функций_ Логическая функция_ Если
- •1. Цель работы:
- •2. Теоретические основы:
- •3. Задание.
- •4. Методические указания.
- •5. Контрольные вопросы.
- •Тема 6. Основы операционных систем и сетей. Лекция №20. Базы данных. Назначение и основные функции (1час)
- •Контрольные вопросы
- •Тема 6. Основы операционных систем и сетей. Лекция №22 Microsoft Access. Запросы (1час)
- •1 Теоретическая часть
- •1.1 Основные сведения о запросах
- •1.2.1 Запросы на выборку и их использование
- •1.2.2 Запросы с параметрами и их использование
- •1.2.3 Перекрестные запросы и их использование
- •1.2.4 Запросы на изменение и их использование
- •2. Создание запроса
- •3. Практическая часть
- •3.1 Создание простого запроса на выборку с помощью мастера
- •2.2 Создание простого запроса на выборку самостоятельно в режиме конструктора.
- •Тема 6. Основы операционных систем и сетей. Лекция №23. Access_ Поиск и отбор данных (2час) Тема Access_ Поиск и отбор данных
- •Цель. Ознакомление с командами поиска, фильтрации и сортировки. Применение и разработка фильтров для объектов ms Access. Простой поиск
- •Сортировка записей по одному полю
- •Обычный фильтр
- •Расширенный фильтр
- •1.1 Общие сведения о формах
- •1.2 Разделы формы
- •1.3 Создание формы
- •1.4 Общие сведения об элементах управления
- •2 Практическая часть
- •2.1 Создание формы для ввода данных.
- •3 Контрольные вопросы.
- •Тема 7. Графика и интернет. Лекция №25 Internet. Сeти (2час)
- •Internet. Сети.
- •Характеристики процессоров
- •Тема 7. Графика и интернет. Лекция № Архиваторы. Антивирусные программы (1час)
- •Архиватор zip (pkzip, pkunzip, zip2exe, pkzipfix)
- •Архиватор arj
- •Архиватор rar.
- •Компьютерные вирусы.
- •Классификация компьютерных вирусов
Язык ассемблера
В случае, когда нужно иметь эффективную программу, вместо машинных языков используются близкие к ним машинно-ориентированные языки — ассемблеры. Люди используют мнемонические команды взамен машинных команд.
Но даже работа с ассемблером достаточно сложна и требует специальной подготовки.
Например, для процессора Zilog Z80 машинная команда 00000101 предписывает процессору уменьшить на единицу свой регистр B. На языке ассемблера это же будет записано как DEC B.
Структурное программирование
Следующий шаг был сделан в 1954 году, когда был создан первый язык высокого уровня — Фортран (англ. FORTRAN - FORmula TRANslator). Языки высокого уровня имитируют естественные языки, используя некоторые слова разговорного языка и общепринятые математические символы. Эти языки более удобны для человека, с помощью них, можно писать программы до нескольких тысяч строк длиной. Однако легко понимаемый в коротких программах, этот язык становился нечитаемым и трудно управляемым, когда дело касалось больших программ. Решение этой проблемы пришло после изобретения языков структурного программирования (англ. structured programming language), таких как Алгол(1958), Паскаль(1970), Си(1972).
Структурное программирование предполагает точно обозначенные управляющие структуры, программные блоки, отсутствие инструкций безусловного перехода (GOTO), автономные подпрограммы, поддержка рекурсии и локальных переменных.
Суть такого подхода заключается в возможности разбиения программы на составляющие элементы.
Также создавались функциональные (аппликативные) языки (Пример: Lisp — англ. LISt Processing, 1958) и логические языки (пример: Prolog — англ. PROgramming in LOGic, 1972).
Хотя структурное программирование, при его использовании, дало выдающиеся результаты, даже оно оказывалось несостоятельным тогда, когда программа достигала определенной длины. Для того чтобы написать более сложную (и длинную) программу, нужен был новый подход к программированию.
В итоге в конце 1970-х и начале 1980-х были разработаны принципы объектно-ориентированного программирования. ООП сочетает лучшие принципы структурного программирования с новыми мощными концепциями, базовые из которых называются инкапсуляцией, полиморфизмом и наследованием.
Примерами объектно-ориентированных языков являются Object Pascal, C++, Java и др.
ООП позволяет оптимально организовывать программы, разбивая проблему на составные части, и работая с каждой по отдельности. Программа на объектно-ориентированном языке, решая некоторую задачу, по сути, описывает часть мира, относящуюся к этой задаче. Язык QBASIC имеет два основных файла: qbasic.exe (195килобайт) и qbasic.hl p(144килобайта).Существует также дополнительный файл qbasic.ini (133 байта), влияющий на окраску фона окна, в котором создаётся программа. Файл qbasic.hlp служит для получения справочной информации по основным вопросам данного языка.
-
Словарь языка QBASIC содержит порядка 250 слов.
-
Начинать писать программы можно, зная всего три оператора (INPUT, PRINT, GOTO) и обозначения нескольких основных функций.
Команда на QBASIС |
Её действие |
Команда на русском языке |
INPUT |
Запрашивает значения переменных |
Ввод |
|
Выводит на экран значения переменных |
Вывод |
END |
Заканчивает выполнение программы |
Конец |
REM ‘ |
Пояснение к программе |
Заголовок |
CLS |
Очищает экран от записей |
очистить |
Математические функции языка QBASIС
-
SQR(х)-извлечение квадратного корня из числа.(эта программа не допускает ввода отрицательных чисел. При вводе отрицательного числа она допускает сообщение об ошибке.)
-
Пример: 10 INPUT A: B=SQR(A): PRINT B
-
ABS(х)-определение абсолютного значения(модуля) числа.
-
SGN(х)-функция определения знака числа(при отрицательных числах выводиться “-1”. При положительных” 1”, а при нуле выводиться “0”
-
INT(х)-определение наибольшего целого меньшего или равного числовому выражению.
-
CINT(х)- округление чисел.
-
FIX(х)- определение целой части числа.
-
EXP(х)-определение экспоненты числа.
-
LOG(х)-определение натурального логарифма числа.
-
SIN(х)- определение значения синуса заданного в радианах угла.
-
COS(х)-определение значения косинуса заданного в радианах угла.
-
TAN(х)- определение значения тангенса заданного в радианах угла.
-
ATAN(х)- определение значения угла ( в радианах) по заданному значению тангенса.