Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Прибл_реш_диф_уравн.doc
Скачиваний:
12
Добавлен:
06.11.2018
Размер:
636.42 Кб
Скачать

Брянская государственная инженерно-технологическая академия

Кафедра математики

Методические указания и задания к выполнению

расчетно-графической работы по теме:

"Приближенные методы решения

дифференциальных уравнений"

для студентов всех направлений подготовки бакалавров очной формы обучения всех специальностей

Брянск 2011

Брянская государственная инженерно-технологическая академия

Кафедра математики

Утверждены научно-методическим

советом БГИТА

Протокол №____от «___»_________2011 года

Методические указания и задания к выполнению

расчетно-графической работы по теме:

"Приближенные методы решения

дифференциальных уравнений"

для студентов всех направлений подготовки бакалавров очной формы обучения всех специальностей

Брянск 2011

Составители: ст. преподаватель Тайц В.И.,

доцент Камозина О.В.,

доцент Котова И.А.

Рецензент: профессор кафедры Э и АПП, д. ф.-м. наук О.Г. Тайц

Рекомендованы редакционно-издательской и методической комиссиями механико-технологического факультета БГИТА.

Протокол №__________от «____»____________2011 г.

Приближенные методы решения дифференциальных уравнений

Решение многих дифференциальных уравнений нельзя свести к интегрированию известных функций. Поэтому важное значение приобретают приближенные методы решения.

Существуют два метода численного решения дифференциальных уравнений 1-го порядка: метод Эйлера и метод Рунге-Кутта.

  1. Метод Эйлера

Для данного уравнения 1-го порядка

(1)

можно составить таблицу приближенных значений частного решения, удовлетворяющего начальному условию

(2)

или приближенно вычертить интегральную кривую на некотором отрезке[].

По методу Эйлера данный отрезок [] разбивается точками на n частичных отрезков.

На первом частичном отрезке [] искомая интегральная кривая, проходящая через известную точку M0() заменяется касательной к ней в точке

,

Откуда при получается приближенное значение искомого решения уравнения в точке

.

Далее тем же способом для отрезка [] находим приближенное значение искомого решения в точке

.

Продолжая этот процесс, последовательно находим приближенные значения искомого решения в точках .

С увеличением , при достаточно малой длине частичных отрезков, этим методом можно достигнуть заданной точности решения.

Данный отрезок [] удобно разделить на частичные отрезки одинаковой длины

(шаг).

Тогда все последовательные приближенные значения решения уравнения (1), удовлетворяющего начальному условию (2), вычисляются по рекуррентной формуле

.

Таким образом, по методу Эйлера интегральную кривую, проходящую через точку , заменяют ломаной (ломаной Эйлера), каждый отрезок которой проведен по направлению поля, определенного уравнением (1). Иными словами, от предыдущей вершины ломаной к последующей двигаются по касательной к интегральной кривой, проведенной через начальную точку каждого отрезка.

Недостатки метода Эйлера:

1. Малая точность при значительном шаге и большой объем работ при малом шаге.

2. Систематическое накопление ошибок.

Поэтому метод Эйлера применяют лишь для грубых приближений.

Расчет ведется по следующей схеме:

0

1

2

-1