- •Модуль 1
- •3 Розрахунки зубчастих передач
- •1 Вибір електродвигуна
- •Модуль 1
- •2 Кінематичні розрахунки
- •2.1 Розрахунок передаточних чисел
- •2.2 Розрахунки частот обертання
- •2.3 Розрахунки потужностей і моментів, що обертають
- •3 Розрахунки зубчастих передач
- •3.1 Проектувальний розрахунок швидкохідної ступені 1-2
- •3.2 Проектувальний розрахунок тихохідної ступені 3-4
- •3.3 Перевірочний розрахунок ступені 1-2
- •3.4 Перевірочний розрахунок ступені 3-4
- •Література
3.4 Перевірочний розрахунок ступені 3-4
Перевірка на контактну втомну міцність
Розрахункова умова σн ≤ [σ] н
[σ] н = [σ] н расч = 518 МПа.

де Zм = 275 МПа1/2 – коефіцієнт, що враховує механічні властивості матеріалів зв'язаних зубчастих коліс [3, стр.71].
Zн
-
коефіцієнт, що враховує форму зв'язаних
поверхонь зубів, для прямозубих коліс
при α = 20о
![]()
Zε - коефіцієнт, що враховує сумарну довжину контактних ліній. Для прямозубих коліс

Коефіцієнт КН = КНα КНβ КНν = 1∙ 1,06 ∙ 1,1 = 1,17
КНα – коефіцієнт, що враховує розподіл навантаження між зубами. Для прямозубих передач приймається = 1[3, стр.95].
КНβ - коефіцієнт, що враховує розподіл навантаження по ширині вінця.
По табл.37[3] при b2/d1 = 32/72 = 0,44; (колесо приробляється; положення колеса - поблизу однієї з опор) КНβ = 1,06.
КНν – коефіцієнт динамічності навантаження. [3, табл.38].
.
Клас точності 8В. Н2
≤ 350 HВ. КНν
= 1,1.
![]()
σн < [σ] н. 464 < 518 МПа – контактна втомна міцність забезпечена.
Перевірка на втомну міцність на згин
Розрахункова умова: σF ≤ [σ] F.
З'ясовуємо, по якому із зубчастих коліс пари вести розрахунок, для чого і для шестерні, і для колеса розраховуємо [σ] F/YF.
Напруга на згин, що допускається
Для шестерні:
![]()
де σF limb = 1,8ННВ =1,8 ∙ 285 = 513 МПа. [3, табл.39] – межа витривалості зубів при згині.
KFc – коефіцієнт, що враховує напрям додатка навантаження до зубів. Для нереверсивних передач KFc =1.
SF =2,2 – коефіцієнт запасу, вибираємо з табл.41 (вірогідність не руйнування більш 0,99) [3].
KFL – коефіцієнт довговічності. Розраховуємо по формулі:
<
1. Має межі можливих значень при
m = 6 1≤ KFL ≤ 2,08. Приймаємо рівним 1.
де m – показник ступіні. Для зубчастих коліс з твердістю поверхні НВ≤350 m = 6 [3, стр.110].
NFO – базове число циклів змін напруги, відповідне тривалій межі витривалості. Для всіх сталей NFO = 4∙106 [3, стр.110].
NFE – еквівалентне число циклів змін напруги. Розраховується з врахуванням даних режиму навантаження. Для шестерні:

Для колеса: σF limb = 1,8ННВ =1,8 ∙ 250 = 450 МПа.
NFE2 = NFE1/u1-2 = 19600287/1,78 = 11011397
<
1, приймаємо =1.
.
Знаходимо YF1 – безрозмірний коефіцієнт, величина якого залежить від форми зуба. Число зубів Z1 = 36; Z2 = 64. Знаходимо по таблиці.24[3, стр.77].
YF1 = 3,75; YF2 = 3,615.
![]()
«Слабкішим» елементом є колесо, по якому ведеться подальший розрахунок.
де YF2 = 3,615;
Yε ≈ 1- коефіцієнт, що враховує спільну роботу точних зубців;
Yβ = 1- коефіцієнт, що враховує нахил зуба. Для прямозубих передач рівний 1.
KFα – коефіцієнт, що враховує розподіл навантаження між зубами. Для прямозубих циліндричних передач приймається рівним 1.
KFβ - коефіцієнт, що враховує розподіл навантаження по ширині вінця. По таблиці.37 [3, стр.104] при b2/d1 = 32/128 = 0,25; (колесо приробляється; положення колеса - поблизу однієї з опор) КFβ = 1,01.
KFV - коефіцієнт динамічності навантаження. [3, табл.38].
Клас точності 8В. Н2 ≤350 HВ. V = 2,18 м/с; КFν = 1,25.
![]()
σF < [σ] F. 142 < 205 МПа –втомна міцність на згин забезпечена.
Перевірка на контактну міцність при дії максимальних перевантажень.
σн max ≤ [σ] н max,
![]()
σН
= 464 МПа;
![]()
[σ]H max = 2,8σT = 2,8x540 =1512 МПа
де σT = 540 МПа – вибираємо по табл.26 [3] по найменш твердому колесу.
σ H max < [σ]H max
744 < 1512 МПа – контактна міцність при дії максимальних перевантажень забезпечена.
Перевірка міцності на згин при дії максимальних перевантажень.
σF max ≤ [σ] F max,
σF max = σF · Кпер = 142 · 2,57 = 635 МПа.
[σ] F max = 2,75ННВ = 2,75 · 250 = 687,5 МПа.
σF max < [σ] F max; 365 < 687,5 - міцність на згин при дії максимальних навантажень забезпечена.
