
- •Розділ 1. Механіка
- •§ 1.1. Кінематика механічного руху
- •§ 1.2. Швидкість і прискорення
- •§ 1.3. Кінематика обертового руху матеріальної точки
- •§ 1.4 Закони динаміки. Поняття маси, сили, імпульсу, імпульсу сили. Інерціальні системи відліку
- •§ 1.5. Імпульс системи. Закон збереження імпульсу
- •§ 1.6. Центр мас (інерції) системи. Закон руху центра мас
- •§ 1.7. Межі застосування класичного опису частинок
- •§ 1.8. Основний закон динаміки поступального руху твердого тіла
- •§ 1.9. Динаміка обертового руху твердого тіла відносно осі. Поняття моменту інерції, моменту сили та моменту імпульсу твердого тіла.
- •§ 1.10. Закон збереження моменту імпульсу твердого тіла відносно осі
- •§ 1.11. Поняття енергії і роботи. Робота сили. Потужність.
- •§ 1.12. Кінетична енергія. Теорема про зміну кінетичної енергії.
- •§ 1.13. Потенціальні і непотенціальні сили
- •§ 1.14. Потенціальна енергія та її зв’язок з потенціальними силами
- •§ 1.15. Потенціальна енергія гравітаційної взаємодії
- •§ 1.16. Потенціальна енергія пружної взаємодії
- •§ 1.17. Повна механічна енергія. Закон збереження повної механічної енергії.
- •§ 1.18. Графічне представлення енергії
- •§ 1.19. Перетворення координат Галілея
- •§ 1.20. Інерціальні системи відліку. Механічний принцип відносності
- •§ 1.21. Неінерціальні системи відліку. Сили інерції
- •§ 1.22. Властивості простору і часу у класичній механіці
- •§ 1.23. Постулати спеціальної теорії відносності (ств). Перетворення Лоренца
- •§ 1.24. Властивості простору і часу в релятивістській механіці (наслідки із перетворень Лоренца)
- •§ 1.25. Правила додавання швидкостей в релятивістській механіці
- •§ 1.26. Маса, імпульс і основний закон динаміки в релятивістській механіці
- •§ 1.27. Закон взаємозв’язку між масою і енергією
- •§ 1.28. Про єдиний закон збереження маси, імпульсу і енергії
- •§ 1.29. Гідростатика нестисливої рідини. Закон Паскаля. Гідростатичний тиск. Закон Архімеда
- •§ 1.30. Рух ідеальної рідини. Рівняння нерозривності. Рівняння Бернуллі
- •§ 1.31. Гідродинаміка в’язкої рідини. Сила Стокcа
- •Розділ 2. Основи молекулярної фізики і термодинаміки
- •§ 2.1. Статистичний і термодинамічний методи дослідження. Тепловий рух. Основні поняття
- •§ 2.2. Рівняння стану ідеального газу
- •§ 2.3. Основне рівняння молекулярно-кінетичної теорії газів
- •§ 2.4. Середня квадратична швидкість молекул. Молекулярно-кінетичне тлумачення температури
- •§ 2.5. Розподіл Максвела молекул за швидкостями та енергіями
- •§ 2.6. Барометрична формула. Розподіл Больцмана частинок у потенціальному полі
- •§ 2.7. Внутрішня енергія системи. Теплота і робота
- •§ 2.8. Робота розширення (стискання) газу
- •§ 2.9. Перше начало термодинаміки та його застосування до ізопроцесів
- •§ 2.10. Середня кінетична енергія молекул. Внутрішня енергія ідеального газу
- •§ 2.11. Теплоємність газів. Недоліки класичної теорії теплоємностей
- •§ 2.12. Адіабатичний процес. Рівняння Пуасона
- •§ 2.13. Оборотні та необоротні процеси. Цикли
- •§ 2.14. Цикл Карно. Максимальний ккд теплової машини
- •§ 2.15. Друге начало термодинаміки. Нерівність Клаузіуса
- •§ 2.16. Ентропія. Закон зростання ентропії
- •§ 2.17. Статистичний зміст другого начала термодинаміки
- •§ 2.18. Ефективний діаметр молекули. Середнє число зіткнень і середня довжина вільного пробігу
- •§ 2.19. Явища перенесення
- •§ 2.20. Молекулярно-кінетична теорія явищ перенесення
- •§ 2.21. Реальні гази. Рівняння Ван-дер-Ваальса
- •§ 2.22. Ізотерми Ван-дер-Ваальса. Метастабільні стани. Критична точка
- •§ 2.23. Характер теплового руху в рідинах. Поверхневий натяг. Явище змочування. Капілярні явища
- •§ 2.24. Характер теплового руху у твердих тілах. Теплоємність і теплове розширення твердих тіл
- •§ 2.25. Фази і фазові перетворення. Умови рівноваги фаз. Потрійна точка
- •§ 2.26. Рівняння Клапейрона-Клаузіуса
- •§ 2.27. Фазові діаграми
- •§ 3.1.Електричний заряд. Електричне поле. Закон Кулона. Напруженість та індукція електричного поля. Принцип суперпозиції електричних полів
- •§ 3.2. Потік вектора напруженості та індукції електричного поля. Теорема Остроградського-Гауса
- •§ 3.3. Розрахунок електричних полів за допомогою теореми Остроградського-Гауса
- •§ 3.4. Робота сил електричного поля. Теорема про циркуляцію вектора напруженості електричного поля. Потенціал
- •§ 3.5. Розрахунок потенціалу електричного поля деяких заряджених тіл
- •§ 3.6. Провідники в електричному полі. Електроємність відокремленого провідника
- •§ 3.7. Конденсатори. Електроємність конденсатора. З’єднання конденсаторів
- •§ 3.8. Енергія зарядженого тіла і конденсатора. Енергія і густина енергії електричного поля
- •§ 3.9. Діелектрики в електричному полі. Поляризація діелектриків
- •§ 3.10. Електричний струм. Закон Ома для ділянки кола. Закон Ома в диференціальній формі
- •§ 3.11. Електрорушійна сила джерела струму. Закон Ома для неоднорідної ділянки кола і для повного кола
- •§ 3.12. Розгалужені електричні кола. Закони Кірхгофа. З’єднання провідників
- •§ 3.13. Робота і потужність струму. Закон Джоуля-Ленца
- •§ 3.14. Електричний струм в металах. Термоелектронна емісія. Контактні явища
- •§ 3.15. Електричний струм в електролітах
- •§ 3.16. Електричний стум в газах. Плазма
- •§ 3.17. Електричний струм у вакуумі
§ 2.13. Оборотні та необоротні процеси. Цикли
Термодинамічний процес, що є неперервною послідовністю рівноважних станів, називається рівноважним (або квазістатичним). Якщо рівноважні стани на діаграмах (p-V чи p-T, чи V-T) зображають точками, то рівноважному процесу відповідає деяка крива, що проходить через ці точки.
Термодинамічний процес називається оборотним, якщо при виконанні його системою спочатку у прямому, а потім у зворотному напрямку, система і зовнішнє середовище повертаються у вихідний стан. Всякі інші процеси – необоротні. Можна показати, що критерієм оборотності процесу є його рівноважність.
О
Рис.2.10
Коловим (круговим) процесом або циклом називають таку послідовність процесів, після завершення якої система повертається до початкового стану. На повторенні відповідних циклів грунтується неперервна дія кожної теплової машини (двигуна). Тому в колових процесах нас цікавитиме насамперед робота, яку виконує система в результаті виконання циклу. Речовину, над якою здійснюється коловий процес, називають робочим тілом.
На
діаграмі p-V
цикл
зображається у вигляді деякої замкнутої
кривої (на рис. 2.10 крива АВСDА).
Першій частині циклу (крива АВС) відповідає
розширення робочого тіла, воно виконує
позитивну роботу, що чисельно рівна
площі фігури
,
заштрихованій вертикальними лініями.
У другій частині циклу, коли робоче тіло
стискається, система виконує негативну
роботу (робота виконується над системою!),
що чисельно дорівнює площі фігури
,
заштрихованій горизонтальними лініями.
Механічна робота А, виконана робочим
тілом за цикл, чисельно дорівнює площі
фігури АВСDА.
Очевидно, що для циклу зміна внутрішньої енергії робочого тіла рівна нулю. Тому на основі 1-го принципу термодинаміки одержується, що Q=A, тобто робота системи за цикл виконується за рахунок кількості теплоти, одержаної ззовні. Треба пам’ятати при цьому, що сам процес передавання теплоти від нагрівника до робочого тіла не супроводиться виконанням роботи (немає переміщення). Робота може виконуватися в результаті взаємодії робочого тіла з іншим тілом. Саме завдяки цій взаємодії відбувається стискання робочого тіла в другій частині циклу. Далі буде з’ясовано, що здійснити такий циклічний процес, при якому теплота, одержана від нагрівника, повністю перетворюється в механічну роботу, взагалі неможливо.
Розглянутий нами цикл АВСDА – прямий; робоче тіло виконує позитивну роботу (A>0 і Q>0). Так працює теплова машина. Цикл виконаний у зворотному напрямку (АDСВА на рис.),– зворотний. Легко переконатися, що у випадку зворотного циклу буде виконана робота (–А). У відповідності з 1-м началом термодинаміки тоді Q<0, тобто робоче тіло передає теплоту зовнішнім тілам. Маємо справу з холодильною машиною. У холодильній машині робоче тіло виконує зворотний цикл.