
- •Розділ 1. Механіка
- •§ 1.1. Кінематика механічного руху
- •§ 1.2. Швидкість і прискорення
- •§ 1.3. Кінематика обертового руху матеріальної точки
- •§ 1.4 Закони динаміки. Поняття маси, сили, імпульсу, імпульсу сили. Інерціальні системи відліку
- •§ 1.5. Імпульс системи. Закон збереження імпульсу
- •§ 1.6. Центр мас (інерції) системи. Закон руху центра мас
- •§ 1.7. Межі застосування класичного опису частинок
- •§ 1.8. Основний закон динаміки поступального руху твердого тіла
- •§ 1.9. Динаміка обертового руху твердого тіла відносно осі. Поняття моменту інерції, моменту сили та моменту імпульсу твердого тіла.
- •§ 1.10. Закон збереження моменту імпульсу твердого тіла відносно осі
- •§ 1.11. Поняття енергії і роботи. Робота сили. Потужність.
- •§ 1.12. Кінетична енергія. Теорема про зміну кінетичної енергії.
- •§ 1.13. Потенціальні і непотенціальні сили
- •§ 1.14. Потенціальна енергія та її зв’язок з потенціальними силами
- •§ 1.15. Потенціальна енергія гравітаційної взаємодії
- •§ 1.16. Потенціальна енергія пружної взаємодії
- •§ 1.17. Повна механічна енергія. Закон збереження повної механічної енергії.
- •§ 1.18. Графічне представлення енергії
- •§ 1.19. Перетворення координат Галілея
- •§ 1.20. Інерціальні системи відліку. Механічний принцип відносності
- •§ 1.21. Неінерціальні системи відліку. Сили інерції
- •§ 1.22. Властивості простору і часу у класичній механіці
- •§ 1.23. Постулати спеціальної теорії відносності (ств). Перетворення Лоренца
- •§ 1.24. Властивості простору і часу в релятивістській механіці (наслідки із перетворень Лоренца)
- •§ 1.25. Правила додавання швидкостей в релятивістській механіці
- •§ 1.26. Маса, імпульс і основний закон динаміки в релятивістській механіці
- •§ 1.27. Закон взаємозв’язку між масою і енергією
- •§ 1.28. Про єдиний закон збереження маси, імпульсу і енергії
- •§ 1.29. Гідростатика нестисливої рідини. Закон Паскаля. Гідростатичний тиск. Закон Архімеда
- •§ 1.30. Рух ідеальної рідини. Рівняння нерозривності. Рівняння Бернуллі
- •§ 1.31. Гідродинаміка в’язкої рідини. Сила Стокcа
- •Розділ 2. Основи молекулярної фізики і термодинаміки
- •§ 2.1. Статистичний і термодинамічний методи дослідження. Тепловий рух. Основні поняття
- •§ 2.2. Рівняння стану ідеального газу
- •§ 2.3. Основне рівняння молекулярно-кінетичної теорії газів
- •§ 2.4. Середня квадратична швидкість молекул. Молекулярно-кінетичне тлумачення температури
- •§ 2.5. Розподіл Максвела молекул за швидкостями та енергіями
- •§ 2.6. Барометрична формула. Розподіл Больцмана частинок у потенціальному полі
- •§ 2.7. Внутрішня енергія системи. Теплота і робота
- •§ 2.8. Робота розширення (стискання) газу
- •§ 2.9. Перше начало термодинаміки та його застосування до ізопроцесів
- •§ 2.10. Середня кінетична енергія молекул. Внутрішня енергія ідеального газу
- •§ 2.11. Теплоємність газів. Недоліки класичної теорії теплоємностей
- •§ 2.12. Адіабатичний процес. Рівняння Пуасона
- •§ 2.13. Оборотні та необоротні процеси. Цикли
- •§ 2.14. Цикл Карно. Максимальний ккд теплової машини
- •§ 2.15. Друге начало термодинаміки. Нерівність Клаузіуса
- •§ 2.16. Ентропія. Закон зростання ентропії
- •§ 2.17. Статистичний зміст другого начала термодинаміки
- •§ 2.18. Ефективний діаметр молекули. Середнє число зіткнень і середня довжина вільного пробігу
- •§ 2.19. Явища перенесення
- •§ 2.20. Молекулярно-кінетична теорія явищ перенесення
- •§ 2.21. Реальні гази. Рівняння Ван-дер-Ваальса
- •§ 2.22. Ізотерми Ван-дер-Ваальса. Метастабільні стани. Критична точка
- •§ 2.23. Характер теплового руху в рідинах. Поверхневий натяг. Явище змочування. Капілярні явища
- •§ 2.24. Характер теплового руху у твердих тілах. Теплоємність і теплове розширення твердих тіл
- •§ 2.25. Фази і фазові перетворення. Умови рівноваги фаз. Потрійна точка
- •§ 2.26. Рівняння Клапейрона-Клаузіуса
- •§ 2.27. Фазові діаграми
- •§ 3.1.Електричний заряд. Електричне поле. Закон Кулона. Напруженість та індукція електричного поля. Принцип суперпозиції електричних полів
- •§ 3.2. Потік вектора напруженості та індукції електричного поля. Теорема Остроградського-Гауса
- •§ 3.3. Розрахунок електричних полів за допомогою теореми Остроградського-Гауса
- •§ 3.4. Робота сил електричного поля. Теорема про циркуляцію вектора напруженості електричного поля. Потенціал
- •§ 3.5. Розрахунок потенціалу електричного поля деяких заряджених тіл
- •§ 3.6. Провідники в електричному полі. Електроємність відокремленого провідника
- •§ 3.7. Конденсатори. Електроємність конденсатора. З’єднання конденсаторів
- •§ 3.8. Енергія зарядженого тіла і конденсатора. Енергія і густина енергії електричного поля
- •§ 3.9. Діелектрики в електричному полі. Поляризація діелектриків
- •§ 3.10. Електричний струм. Закон Ома для ділянки кола. Закон Ома в диференціальній формі
- •§ 3.11. Електрорушійна сила джерела струму. Закон Ома для неоднорідної ділянки кола і для повного кола
- •§ 3.12. Розгалужені електричні кола. Закони Кірхгофа. З’єднання провідників
- •§ 3.13. Робота і потужність струму. Закон Джоуля-Ленца
- •§ 3.14. Електричний струм в металах. Термоелектронна емісія. Контактні явища
- •§ 3.15. Електричний струм в електролітах
- •§ 3.16. Електричний стум в газах. Плазма
- •§ 3.17. Електричний струм у вакуумі
§ 2.10. Середня кінетична енергія молекул. Внутрішня енергія ідеального газу
Найменше число незалежних величин, які визначають положення системи у просторі, називається числом ступенів вільності системи. Наприклад, матеріальна точка має три ступені вільності, бо досить трьох координат x, y, z, щоб задати її положення. Система з N незалежних (або нежорстко зв’язаних) матеріальних точок має 3N ступенів вільності. Система з двох жорстко зв’язаних точок має п’ять ступенів вільності. Всякий жорсткий зв’язок, що закріплює відстань між двома точками, зменшує число ступенів вільності на одиницю. Тому система з трьох і більше жорстко зв’язаних матеріальних точок з нелінійним розміщенням має шість ступенів вільності. Три з них відповідають поступальному руху центра мас і ще три – обертальному руху системи навколо трьох взаємно перпендикулярних осей.
Молекули в першому наближенні можна розглядати як систему з жорстко зв’язаних матеріальних точок-атомів. При цьому число ступенів вільності для одноатомних молекул і=3, для двохатомних – і=5, для трьох і більше атомних – і=6.
У класичній статистичній фізиці Больцманом доведена теорема, що називається законом рівномірного розподілу кінетичної енергії молекул за ступенями вільності. Формулювання цього закону: на кожний ступінь вільності молекули в середньому припадає однакова кінетична енергія, рівна 1/2 kТ. Це означає, що молекула, яка характеризується числом ступенів вільності “і”, має середню кінетичну енергію
.
(2.31)
Наприклад, для одноатомної молекули ця величина рівна 3/2 kT, що співпадає з середньою кінетичною енергією поступального руху (див. формулу (2.14)).
Займемося
тепер розрахунком внутрішньої енергії
ідеального газу. Молекули ідеального
газу не взаємодіють між собою, тому для
такої системи внутрішня енергія співпадає
з сумарною кінетичною енергією молекул.
Внутрішня енергія одного моля ідеального
газу
.
Якщо врахувати тепер вираз (2.31) та
означення сталої Больцмана (2.5), то
одержуємо
.
Внутрішня енергія довільної кількості
ідеального газу
.
Остаточно
.
(2.32)
§ 2.11. Теплоємність газів. Недоліки класичної теорії теплоємностей
Теплоємність тіла – це фізична величина, що чисельно рівна кількості теплоти, яку необхідно надати тілу, щоб підвищити його температуру на один кельвін.
Питома теплоємність – це теплоємність одиниці маси речовини, тобто вона рівна кількості теплоти, яку необхідно надати одиниці маси речовини, щоб підвищити її температуру на один кельвін:
,
(2.33)
– елементарна
кількість теплоти, що надається речовині,
m
– маса
речовини, dT
– елементарний
приріст температури.
.
Молярна теплоємність – теплоємність одного моля речовини, тобто кількість теплоти необхідна для нагрівання одного моля речовини на один кельвін:
,
(2.34)
– кількість
речовини.
.
Завваживши, що
(
– молярна маса), з порівняння формул
(2.33) і (2.34) маємо зв’язок молярної
теплоємності з питомою
.
(2.35)
Теплоємність
(питома чи молярна) є характеристикою
речовини. Однак, виявляється, вона
залежить ще й від процесу, тобто від
умов нагрівання тіла. Покажемо це.
Розрахуємо молярну теплоємність
ідеального газу при сталому об’ємі
.
З цією метою запишемо математичний
вираз 1-го начала термодинаміки для
ізохорного процесу
.
Приріст внутрішньої енергії знайдемо,
продиференціювавши співвідношення
(2.32):
.
Тепер формула (2.34) дає
.
Остаточно
.
(2.36)
Зазначимо попутно, що тепер вираз (2.32) для внутрішньої енергії ідеального газу можна записати у формі
.
(2.37)
У випадку ізобаричного процесу вираз 1-го начала термодинаміки такий:
.
Елементарну
роботу
розрахуємо, виходячи з формули (2.25) і
продиференціювавши рівняння
Менделєєва-Клапейрона (2.3) за умови
p=const:
.
Тепер на основі означення (2.34) маємо для молярної теплоємності ідеального газу при сталому тиску
.
Взявши до уваги формулу (2.36), одержуємо
.
(2.38)
Співвідношення (2.38) відоме як рівняння Майєра; воно дає зв’язок між молярними теплоємностями ідеального газу при сталому тиску та при сталому об’ємі.
З
виразів (2.36) та (2.38) випливає, що: 1)
;
2)
та
не залежать від температури. Такі самі
висновки робимо і відносно питомих
теплоємностей (з огляду на зв’язок
(2.35).
Е
Рис.2.8
від Т для водню (число ступенів вільності
і=5), одержану дослідним шляхом. Графік
свідчить, що класична теорія теплоємностей
справджується лише в окремих інтервалах
середніх температур. В деякій області
низьких температур молекули водню
ведуть себе як системи, які мають лише
ступені вільності поступального руху
(рівень
на рис.). З подальшим зниженням температури
поступальний рух молекул стихає
(“вимерзає”) і
при
.
При високих температурах проявляються
ступені вільності, пов’язані з коливанням
атомів всередині молекул (подана вище
теорія цього не враховує). Правильне
тлумачення результатів експерименту
буде подано у квантовій теорії
теплоємностей.