- •Г.А.Чумаков, к.В.Луняка, с.В.Кривенко
- •Гідравліка і гідропневмопривод
- •Курс лекцій
- •Навчальний посібник
- •Херсон - 2006
- •Гідростатика
- •1.1. Основні фізичні властивості рідин
- •1.1.1. Густина й питома вага
- •1.1.2. Здатність до стиску та температурне розширення рідин
- •1.1.3. Тиск
- •1.2. Основний закон гідростатики
- •1.2.1. Диференціальні рівняння статики Ейлера
- •1.2.2. Основне рівняння гідростатики
- •1.2.5.Тиск рідини на стінку
- •1.2.5.1. Тиск рідини на плоску стінку
- •1.2.5.2. Тиск рідини на криволінійну циліндричну стінку
- •2. Гідродинаміка
- •2.1. Основні характеристики руху рідини
- •2.1.1. Швидкість і витрата
- •2.1.2. Сталий і несталий рух
- •2.1.3. Моделі руху рідини
- •2.1.4. Гідравлічний радіус і еквівалентний діаметр
- •2.1.5. Режими руху рідини
- •2.2. Рівняння нерозривності (суцільності) потоку
- •2.3. Диференціальне рівняння Нав’є – Стокса
- •2.4. Диференціальні рівняння руху Ейлера
- •2.5. Рівняння Бернуллі
- •2.5.1. Виведення рівняння
- •2.5.2. Деякі практичні використання рівняння Бернуллі Принцип виміру швидкості і витрати рідини
- •2.6. Рівномірний рух рідини
- •2.7. Ламінарний рух рідини
- •2.7.1. Розподіл швидкості по горизонтальному перерізу труби
- •2.7.2. Середня швидкість при ламінарному русі
- •2.7.3. Втрати напору при русі рідини
- •2.8. Турбулентний рух
- •2.9. Втрати напору при русі рідини
- •2.10. Витікання рідини через отвори та насадки
- •2.11. Гідравлічний розрахунок сифонів
- •2.12. Гідравлічний удар
- •2.13. Гідравлічний розрахунок трубопроводів
- •2.13.1. Розрахунок простого трубопроводу
- •2.13.2. Розрахунок складного трубопроводу
- •2.13.3. Техніко-економічний розрахунок трубопроводів
- •3. Гідравлічні машини
- •3.1.2. Динамічні насоси
- •3.1.2.1.1. Відцентрові насоси
- •Основне рівняння відцентрових машин Ейлера
- •Продуктивність насосу
- •Закони пропорційності
- •Характеристики відцентрових насосів
- •Коефіцієнт швидкохідності
- •Осьовий тиск та його врівноважування
- •Робота насосів на мережу
- •Спільна робота насосів
- •3.1.2.1.2. Осьові (пропелерні) насоси
- •3.1.2.2.1. Вихрові насоси
- •3.1.2.2.2. Струминні насоси
- •3.1.3.1. Поршневі насоси
- •Нерівномірність подачі
- •3.1.3.2. Шестеренні насоси
- •3.1.3.3. Гвинтові насоси
- •Продуктивність
- •3.1.3.4. Пластинчасті насоси
- •3.1.3.5. Роторно – поршневі насоси
- •3.1.3.6. Насоси з обертовими поршнями
- •3.2. Інші види гідравлічних машин
- •4. Гідродинамічні передачі
- •4.1. Загальні поняття
- •4.2. Гідромуфти і гідротрансформатори
- •4.2.1. Гідромуфти
- •4.2.2. Гідротрансформатори
- •5. Об’ємний гідравлічний привод і його елементи
- •5.1. Гідродвигуни
- •5.2. Гідроапаратура та інші елементи гідроприводу
- •5.2.1. Гідророзподільчі пристрої
- •Золотники є найбільш поширеними розподільчими пристроями. Це керовані елементи гідроапаратури, за допомогою яких здійснюється розподіл рідини, реверсування руху і перемикання трубопроводів.
- •5.2.2. Дросельні пристрої
- •5.2.3. Клапани
- •5.2.4. Гідроакумулятори
- •Література
2.1.4. Гідравлічний радіус і еквівалентний діаметр
Це основні розрахункові лінійні розміри. Гідравлічний радіус R (м) - це відношення площі затопленого перерізу трубопроводу або каналу (S, м2) до змоченого периметру (П, м).
(2.5)
Для круглої труби
![]()
(2.6)
Діаметр, виражений через гідравлічний радіус, називається еквівалентним діаметром (de).
Для круглої труби
(2.7)
Порівнявши (2.6) з (2.7), отримуємо:
(2.8)
Таблиця 15
Розрахункові формули для визначення еквівалентного діаметру перерізу (заштрихованого простору)
-
Переріз
Формула
Переріз
Формула
Переріз
Формула




де n – кількість отворів






2.1.5. Режими руху рідини
Режими руху рідини можна прослідити, якщо вводити у потік підфарбовану струминку рідини. Для кількісної рідини використовують критерії Рейнольдса
(2.9)
де - динамічний коефіцієнт в’язкості, Пас; - кінематичний коефіцієнт в’язкості, м2/с.
Критерій Рейнольдса - це безрозмірний критерій гідродинамічної подібності потоків, що протікають по трубах і каналах. Він є мірою відношення сил інерції і внутрішнього тертя в потоці. Для потоків рідин, що проходять по прямих гладких трубах, критерій Рейнольдса має такі значення:
ламінарний потік: Re < 2300 (Reкр =2300);
перехідний: 2300 < Re < 10000;
турбулентний: Re > 10000.
2.2. Рівняння нерозривності (суцільності) потоку
Умова суцільності: в потоці не утворюється порожнин, які не заповнюються рідиною. Рівняння постійної витрати (нерозривності потоку) мають вигляд (див. рис.15 б):
(2.10)
(2.11)
де G1, G2, G3 – масові витрати, S1, S2, S3 – площі різних перерізів.
2.3. Диференціальне рівняння Нав’є – Стокса
При русі реальної (в’язкої) рідини в потоці діють сили: масові, гідростатичного тиску, тертя, а також сили стиску й розтягування. Нав’є і Стоксом виведена система диференціальних рівнянь руху реальної рідини має вигляд (2.12), у якій:
– проекції зовнішніх
сил на відповідні осі систем
координат;
X,Y,Z – проекції на відповідні осі масових сил, віднесених
до одиниці маси;
,
,
- проекції гідростатичного стиску,
діючого уздовж осей.
(2.12)
- сума других
похідних по осі х
має назву оператор Лапласа.
Отже, проекції рівноважної сил тертя на вісь х має вигляд
![]()
Аналогічно для осей у, z.
При русі рідини, що стискається, у ній додатково виникають спричинені тертям сили стиску і розтягування, рівняння Нав’є-Стокса набувають вигляду:

(2.13)
де часткові похідні
,
,
виражають зміни швидкостей по осях x,
y, z, пов’язані
з дією сил стиску і розтягування, причому
![]()
Повне описання руху в’язкої рідини в його найбільш загальній формі можна отримати шляхом вирішення системи рівнянь Нав’є-Стокса разом з рівнянням нерозривності потоку (2.10, 2.11). Однак ці рівняння не можуть бути вирішені в загальному вигляді. Вирішують їх при низці спрощуючих припущень або при перетворенні цих рівнянь за допомогою методів теорії подібності.
