Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Понятие о множестве.docx
Скачиваний:
51
Добавлен:
02.11.2018
Размер:
296.59 Кб
Скачать

Сравнение множеств по числу элементов.

Пусть даны два множества:А={a, b,c} и B={}.Спрашивается: в каком множестве больше элементов. Или даны два множества А={a,b, c} и С={1, 2,3,4}. Где больше элементов?

Видимо, на этот вопрос ответят все и на дополнительный вопрос: “А как Вы это узнали?” также ответят просто: сосчитали. В множестве А 3 элемента, в множестве В – тоже 3, в множестве С – 4, так что ответ очевиден.

Но вот более сложный вопрос: даны два множества N={1, 2, 3, 4, …} и D={2, 4, 6, 8,…}. В каком множестве больше элементов? И на сам собой напрашивающийся ответ: “конечно, их больше в N. Больше в 2 раза” можно спросить: “А как Вы это узнали? Неужели сосчитали? Но ведь в этих множествах бесконечное число элементов, так что сосчитать Вы никак не могли”.

Или: даны 2 отрезка:

На каком отрезке больше точек? И так же ответ “Конечно, на CD, ведь он длиннее”, так же возразить “Неужели Вы сосчитали точки?”

Поэтому встает проблема сравнения двух множеств по числу элементов не считая их. И это можно сделать, например, так (см. самый первый пример).

A

a

b

c

A

a

b

c

 

B







C

1

2

3

4

В первом случае ясно, что во множествах А и В одинаковое число элементов, а во втором, что в С больше элементов. Заметьте, что в этом случае нет необходимости считать элементы, ответ получается без счета. Оформим этот момент в виде двух точных определений.

Определение 1 пусть даны два множества А и В. Правило, которое каждому элементу множества А ставит в соответствие элемент множества В, причем так, что каждому элементу множества В оказывается поставленным в соответствие один и только один элемент множества А называется взаимно-однозначным соответствием между множествами А и В.

Теперь ясно, что было сделано. Между множествами А={a, b, c} и B={}было установлено взаимно-однозначное соответствие (), а между множествами А и С этого сделать не удастся.

Определение 2 Если между множествами А и В можно установить взаимно-однозначное соответствие, то говорят, что эти множества эквивалентны по числу элементов (или: “имеют одинаковое число элементов”; или “имеют одинаковую мощность”).

Теперь можно ответить и на вопрос о бесконечных множествах. Рассмотрим множества N и D. Ясно, что между ними можно установить взаимно-однозначное соответствие.

N

1

2

3

4

n

D

2

4

6

8

2n

И поэтому, в этих множествах одинаковое число элементов. Четных чисел столько же, сколько и всех натуральных!

В отношении двух отрезков вопрос также решается очень просто. Проделав построение, указанное на рисунке, получим, что между точками отрезков АВ и CD установлено взаимно-однозначное соответствие. Таким образом, на этих двух отрезках одинаковое число точек (несмотря на то, что отрезок CD длиннее отрезка АВ).

В чем же была ошибка? Она была в том, что на бесконечные множества были перенесены свойства конечных множеств. Но ведь бесконечность – очень сложная штука, и с ней надо обращаться очень осторожно. Ведь человек – существо конечное (в нем, например, конечное число молекул), как же он может моделировать бесконечные множества?