
- •Калининград, 2001
- •Содержание
- •Введение
- •Тема 1. Статистическая группировка и сводка
- •Пример решения задач Задача 1.1
- •Группировка работников по стажу работы
- •Сводная таблица
- •Условия задач Задача 1.2
- •Задача 1.3
- •Задача 1.4
- •Задача 1.5
- •Задача 1.6
- •Задача 1.7
- •Задача 1.8
- •Задача 1.9
- •Задача 1.10
- •Задача 1.11
- •Тема 2. Средние величины и показатели вариации
- •Виды и формы средних величин
- •Примеры решения задач Задача 2.1.
- •Задача 2.2.
- •Задача 2.3
- •Условия задач Задача 2.4
- •Задача 2.5
- •Задача 2.6
- •Задача 2.7
- •Задача 2.8
- •Задача 2.9
- •Задача 2.10
- •Задача 2.11
- •Задача 2.12
- •Задача 2.13
- •Задача 2.14
- •Задача 2.15
- •Задача 2.16
- •Вычислите среднюю, показатели вариации, моду и медиану. Задача 2.17
- •Задача 2.18
- •Задача 2.19
- •Задача 2.20
- •Задача 2.21
- •Задача 2.22
- •Задача 2.23
- •Задача 2.24
- •Задача 2.25
- •Задача 2.26
- •Задача 2.27
- •Задача 2.28
- •Задача 2.29
- •Задача 2.30
- •Задача 2.31
- •Задача 2.32
- •Задача 2.33
- •Задача 2.34
- •Задача 2.35
- •Задача 2.36
- •Задача 2.37
- •Задача 2.38
- •Задача 2.39
- •Задача 2.40
- •Задача 2.41
- •Задача 2.42
- •Задача 2.43
- •Задача 2.44
- •Задача 2.45
- •Задача 2.46
- •Задача 2.47
- •Задача 2.48
- •Задача 2.49
- •Задача 2.50
- •Задача 2.51
- •Задача 2.52
- •Задача 2.53
- •Задача 2.54
- •Задача 2.55
- •Задача 2.56
- •Задача 2.57
- •Задача 2.58
- •Задача 2.59
- •Задача 2.60
- •Задача 2.61
- •Задача 2.62
- •Задача 2.63
- •Задача 2.64
- •Задача 2.65
- •Задача 2.66
- •Задача 2.68
- •Задача 2.69
- •Задача 2.70
- •Задача 2.71
- •Задача 2.72
- •Задача 2.73
- •Задача 2.74
- •Задача 2.75
- •Задача 2.76
- •Задача 2.77
- •Задача 2.78
- •Задача 2.79
- •Тема 3. Ряды динамики
- •Примеры решения задач Задача 3.1.
- •Данные о розничном товарообороте России в 1998 г.*
- •Показатели динамики для ряда "Удельный вес товарооборота общественного питания в розничном товарообороте, %"
- •Задача 3.2.
- •Производство валового внутреннего продукта в России в 1997-1998 гг. (в сопоставимых ценах, млрд руб.)*
- •Задача 3.3
- •Данные о количестве браков в России в 1996-1997 гг., тыс.
- •Задача 3.4
- •Задача 3.5
- •Инвестиции в основной капитал в январе-сентябре 1998 г., млрд руб.*
- •Задача 3.7
- •Экономически активное население России (на конец периода, млн чел.)
- •Задача 3.8
- •Данные о добыче и экспорте нефти
- •Задача 3.9
- •Задача 3.10
- •Задача 3.11
- •Задача 3.12
- •Инвестиции в основной капитал, в млрд руб.
- •Задача 3.13
- •Перевозки грузов железнодорожным транспортом, млн т
- •Задача 3.14
- •Импорт товаров (млрд. Долл. Сша)
- •Задача 3.15
- •Розничный товарооборот, млрд руб.
- •Задача 3.16
- •Задача 3.17
- •Задача 3.18
- •Задача 3.19
- •Задача 3.20
- •Тема 4. Относительные величины
- •Примеры решения задач Задача 4.1
- •Задача 4.2
- •Условия задач Задача 4.3
- •Задача 4.4
- •Задача 4.5
- •Задача 4.6
- •Задача 4.7
- •Задача 4.8
- •Задача 4.9
- •Задача 4.10
- •Задача 4.11
- •Задача 4.12
- •Задача 4.13
- •Задача. 4.14
- •Задача 4.15
- •Задача 4.16
- •Задача 4.17
- •Тема 5. Индексы
- •Примеры решения задач Задача 5.1
- •Расчет количества добытого угля и индивидуальных индексов добычи
- •Задача 5.2
- •Задача 5.3
- •Условия задач Задача 5.4
- •Задача 5.5
- •Задача 5.6
- •Задача 5.7
- •Задача 5.8.
- •Задача 5.9
- •Задача 5.10
- •Задача 5.11
- •Задача 5.12
- •Задача 5.13
- •Определите:
- •Задача 5.14
- •Задача 5.15
- •Задача 5.16
- •Задача 5.17
- •Тема 6. Выборочное наблюдение
- •Примеры решения задач Задача 6.1
- •Задача 6.2
- •Задача 6.14
- •Задача 6.15
- •Задача 6.16
- •Задача 6.17
- •Задача 6.18
- •Задача 6.19
- •Задача 6.20
- •Задача 6.21
- •Задача 6.22
- •Задача 6.23
- •Задача 6.24
- •Задача 6.25
- •Тема 7. Анализ взаимосвязей
- •Шкала Чеддока
- •Примеры решения задач Задача 7.1
- •И издержками обращения
- •Задача 7.2
- •Задача 7.3
- •Задача 7.4
- •Условия задач Задача 7.5
- •Показатели уровня жизни населения
- •Задача 7.6
- •Задача 7.7
- •Задача 7.8
- •Задача 7.9
- •Задача 7.10
- •Задача 7.11
- •Задача 7.12
- •Задача 7.13
- •Задача 7.14
- •Список рекомендуемой литературы
Шкала Чеддока
Теснота связи |
0,1-0,3 |
0,3-0,5 |
0,5-0,7 |
0,7-0,9 |
0,9-0,99 |
Сила связи |
слабая |
умеренная |
заметная |
высокая |
весьма высокая |
При проверке пригодности рассчитанного уравнения регрессии для практического использования применяют индекс детерминации, который равен отношению факторной и общей дисперсий:
.
(7.17)
Если R2 ≥ 0,5, модель пригодна для практического применения, так как более половины общей вариации результативного признака объясняется воздействием факторного признака.
Оценка надежности параметров уравнений регрессии и показателей тесноты связи необходима, т.к. расчеты данных показателей проводятся, как правило, по выборочным данным, и могут быть расхождения между генеральными и выборочными характеристиками.
Точность коэффициента регрессии - параметра а1 - оценивается по t-критерию:
.
(7.23)
для оценки параметра а0 используют формулу:
,
(7.24)
где а1, а0 - расчетные значения параметров;
n - количество пар значений признаков х и у;
- остаточная дисперсия, которая
рассчитывается следующим образом:
.
(7.25)
- дисперсия факторного признака,
рассчитываемая по формуле:
.
(7.26)
расчетные значения t-критериев сравнивают с табличными значениями для заданного уровня значимости α. Уровень значимости α показывает вероятность того, что рассчитанные показатели попадут в предельные интервалы. Вероятность равна:
.
(7.27)
например, при уровне значимости 0,01 вероятность расчетов определяется из формулы (7.27):
.
Р = 0,995 означает, что в 995 случаях из 1000 рассчитанные показатели попадут в теоретические пределы.
Коэффициент корреляции оценивается при помощи t-критерия Стьюдента:
,
(7.28)
где r - расчетное значение коэффициента корреляции.
Индекс корреляции надежен в тех случаях, если расчетное значение F-критерия Фишера больше его табличного значения.
,
(7.29)
где m - число параметров уравнения регрессии;
n - количество пар значений признаков х и у.
Помимо коэффициента и индекса корреляции для определения тесноты связи используются и другие, менее точные показатели, например, коэффициент корреляции рангов Спирмэна. Этот показатель рассчитывается на основе метода выстраивания параллельных рядов и ранжирования значений х и у.
Коэффициент Спирмэна определяется по формуле:
,
(7.30)
где d - разность рангов (порядковых номеров) признаков х и у;
n - количество пар значений х и у.
Теснота связи альтернативных признаков определяется при помощи коэффициентов ассоциации и контингенции.
,
(7.31)
.
(7.32)
для расчетов коэффициентов ассоциации и контингенции используют вспомогательную табл. 7.2.
Таблица 7.2
|
Да |
Нет |
Итого |
Группа по признаку A |
|||
Да |
а |
b |
a + b |
Нет |
c |
d |
c + d |
Итого |
a + c |
b + d |
|