
- •1. Основные определения. Технология моделирования
- •2. Методология моделирования
- •3. Анализ моделируемой системы и постановка задач
- •4.Второй этап моделирования. Формализация. Решение Задачи. Выбор метода моделирования
- •5. Корреляционный анализ
- •6.Третий этап моделирования. Разработка имитационных моделей.
- •7.Генерация равномерно-распределенных случайных чисел. Оценка их качества на тестах (по книге).
- •Тест частот
- •8.Планирование имитационных экспериментов. Концепция «черного ящика» Планирование экспериментов
- •9.План дфэ (дробных факторных экспериментов).
- •10. Рцкп (ротатабельный центральный композиционный план).
- •12.Тактическое планирование имитационных эксперементов
- •14.Основные свойства системы Arena.
- •15. Кластерный анализ. Евклидово расстояние. Ближайший сосед. Наиболее удаленный сосед. По среднему значению. Расстояние Хемминга.
- •1. Фр, фп, мпф, Равномерный экспоненциальный закон.
- •2. Метод моментов. Равномерный закон.
- •Метод моментов для равномерного закона
- •3. Метод моментов. Нормальный закон.
- •4. Метод моментов. Экспоненциальный закон.
- •5. Метод моментов. Гиперэкспоненциальный закон.
- •Решим полученное квадратное уравнение.
- •6. Метод моментов. Специальный эрланговский закон.
- •7. Метод обратной функции. Достоинства и недостатки.
- •Достоинства и недостатки аналитического метода генерации случайных чисел
- •8. Табличный метод генерации случайных чисел. Достоинства и недостатки.
- •9. План пфэ (полного факторного эксперимента).
- •10. План оцкп (ортогональный центральный композиционный план).
- •12. Применение дисперсионного анализа для оценки качества уравнений регрессии. Оценка значимости коэффициентов полинома.
- •13. Метод оптимизации по системе ур-й в частных производных.
- •14. Геометрический метод для 2 факторов.
- •15. Метод Ньютона.
- •1. Временные динамические ряды. Основные понятия. Проверка гипотез о существовании тенденций. Временные ряды
- •2. Сглаживание и прогнозирование методом скользящих средних. В чем смысл введения взвешиваний.
- •Сглаживание
- •Метод скользящих средних
- •Взвешенные скользящие средние
- •3. Сглаживание и прогнозирование экспоненциальных средних
- •4. Прогнозирование на нейронных сетях Прогнозирование на нейронных сетях
- •5. Группировка. Общие понятия. Постановка задачи и технология проведения кластерного анализа.
1. Фр, фп, мпф, Равномерный экспоненциальный закон.
Функция распределения (ФР) экспоненциального закона приведена на рис.3.5. Это вероятность того, что случайная величина Х не превысит своего текущего значения х.
Функция плотности (ФП). Это плотность вероятности случайной величины, или дифференциальная функция распределения. ФП экспоненциального закона приведена на рис:
2. Метод моментов. Равномерный закон.
Суть метода моментов заключается в приравнивании оценок моментов, вычисленных по экспериментальным данным, соответствующим им моментам, вычисленным по функции плотности. Качество представления рекомендуется оценивать по критериям согласия.
Метод моментов для равномерного закона
Функция плотности равномерного закона:
(11.15)
Вычислим первый и второй начальные моменты:
(11.16)
(11.17)
Вычислим стандартное отклонение и параметры равномерного закона:
(11.18)
(11.19)
(11.20)
Вычислим вероятность попадания случайной величины в интервалы гистограммы и гипотетическую ФР:
(11.21)
(11.22)
Следует учитывать, что при построении гистограммы принимается:
;
.
3. Метод моментов. Нормальный закон.
Суть метода моментов заключается в приравнивании оценок моментов, вычисленных по экспериментальным данным, соответствующим им моментам, вычисленным по функции плотности. Качество представления рекомендуется оценивать по критериям согласия.
Нормальный закон является наиболее употребительным. Он применяется для представления случайных процессов, таких как продолжительность жизни людей, изменения экономических и технических показателей. Функция плотности нормального закона:
Особенностью нормального закона является то что в качестве его параметров в функцию плотности входят математическое ожидание и среднее квадратическое отклонение, поэтому для использования метода моментов достаточно подставить их оценки, вычисленные по экспериментальному распределению. Для оценки качества аппроксимации по критериям согласия Пирсона и Колмогорова требуется вычислить вероятность попадания случайной величины в интервалы гистограммы и гипотетическую ФР. Так как интеграл от функции плотности нормального закона аналитически «не берётся», то он определяется по таблицам, составленным для нормального закона с математическим ожиданием, равным нулю, и средним квадратическим отклонением, равным единице с преобразованием реального распределения по следующим формулам: