- •1.1. Внутренняя сортировка (сортировка массивов).
- •Число степеней свободы материальной системы. Обобщенные координаты.
- •1.4 Розробити консольну програму, яка відкриває файл порціями по 4Кб та відображае його зміст в вікні. Для роботи з файлами викорастати Win32 Api
- •Определить маску подсети, которая соответствует диапазону ip-адресов.
- •1 Способ
- •2 Способ
- •2.2 Проектирование концептуальной модели предметной области с использованием er – диаграммы
- •2.3 . Принцип возможных перемещений. Обобщенные силы.
- •2.4 Написать 2 варианта запуска Notepad.Exe для обработки файла
- •1 Способ
- •2 Способ
- •3.2 Структура данных и ограничения реляционной модели. Реляционная модель.
- •Внешние ключи.
- •Основные стратегии поддержки ссылочной целостности.
- •Языки манипулирования данными в реляционной модели.
- •3.3 Вариационный принцип Гамильтона
- •3.4 Написать 2 конс. Программы Master и Slave. Master запускает Slave и передает ей через ком. Строку дескриптор своего процесса. Slave ожидает окончания работы Master и выдает сообщение.
- •4.2 Нормализация отношений и теория нормальных форм
- •Теория нормальных форм.
- •4.3 Дифференциальные уравнения Лагранжа II рода
- •4.4 Написать 2 программы, демонстрир. Синхрониз. Процессов с пом. Событий.
- •5.2 Алгоритм приведения отношений к третьей нормальной форме.
- •5.3 Фазовая плоскость. Фазовые кривые. Особые точки на фазовой плоскости, их классификация.
- •Классификация особых точек
- •5.4 Программа, демонстрирующая синхронизацию доступа к глобальному массиву с пом. Мютексов
- •6.2 Использование операций реляционной алгебры для создания языка запросов Основные операции:
- •1. Унарные(с одним отношением). 2. Бинарные.
- •Производные операзии
- •6.3 Численное интегрирование уравнений Лагранжа
- •6.4 Программа, выводящая информ . О загрузке операт . Памяти компьютера
- •7.2 Назначение языка sql.
- •Типы данных
- •7.3 Дифференциальные уравнения Гамильтона
- •7.4 Параметризированный класс очередь
- •8.1 Понятие дерева. Классификация деревьев. Способы представления дерева.
- •8.2 Структура запросов sql. Запросы с условием.
- •Запросы с группировкой.
- •Сортировка (упорядочивание) выходных полей.
- •Объединение таблиц (команда union).
- •Использование кванторов в подзапросах.
- •8.3 Динамика популяции при отсутствии и наличии смертности
- •8.4 Составить программу на Asm для очистки экрана
- •9.1 Общие операции над деревьями. Процедуры добавления и удаления элемента. Количество листьев и узлов в дереве.
- •9.2 Язык манипулирования данными sql. Добавление строк.
- •Удаление строк.
- •Изменение данных.
- •9.3 Система «хищник-жертва»
- •9.4 Cоставить прграмму на Asm для преобразования строчных букв в прописные
- •10.1 Общие операции над деревьями. Процедуры добавления и удаления элемента. Количество листьев и узлов в дереве.
- •10.2 Язык определения данных sql. Создание бд.
- •Создание таблиц.
- •Модификация таблиц.
- •10.3 Автоколебания. Предельный цикл. Асимптотический метод исследования автоколебаний.
- •10.4 Сост . Прогр . На Asm для нахождения в заданном массиве номера первого числа, равного нулю
- •11.1 Формат команд процессора 80386. Способы адресации, которые применяются в командах процессора 80386.
- •11.2 Предоставления прав доступа sql.
- •11.3 Виды топологических структур и их характеристики.
- •Класс широковещательные сети
- •2. Древовидная топология.
- •3. Звездообразная топология.
- •Класс последовательные сети
- •1. Звездообразная топология с активным центром.
- •2. Кольцевая топология.
- •11.4 Написать на Asm программу для сохранения текстового экрана в буфере и последующей записи буфера в файл
- •12.1 Методы передачи данных в сетях эвм.
- •1 Коммутация каналов
- •Коммутация сообщений
- •Коммутация пакетов
- •12.2 Защищенный режим работы микропроцессора. Адресация в защищенном режиме. Дескрипторные таблицы. Формат дескриптора сегмента. Модель памяти flat.
- •Проектирование приложений в системе клиент - сервер.
- •Проектирование форм. Формы для просмотра.
- •Формы для ввода данных.
- •Проектирование отчетов.
- •Тестирование приложения.
- •Распределенные базы данных.
- •12.4 Дан файл символов построить частотный словарь, представив его виде бинарного дерева поиска и составить линейно скобочную запись.
- •13.1 Win32 api и поддерживающие его платформы. Объекты ядра. Защита. Совместное использование объектов ядра несколькими процессами. Процессы. Описатель экземпляра процесса.
- •13.2 Системы искусственного интеллекта на основе решателей задач
- •13.3 Архитектура сетей эвм. Иерархия протоколов.
- •13.4 Дан файл, компоненты которого являются действительными числами. Сформировать линейный список и
- •14.1 Потоки. Функция CreateThread. Завершение потока. Распределение процессорного времени между потоками. Изменение класса приоритета процесса. Установка относительного приоритета потока.
- •14.2 "" Процедура в игровых задачах
- •14.3 Методы повторной передачи arq.
- •1. Arq с остановкой и ожиданием Send and Wait
- •2. Arpanet arq (с временными подканалами)
- •3. Arq на n шагов назад (Go Back n)
- •4. Arq с выборочным повтором (с адресным переспросом)
- •14.4 // Дан файл символов. Сформировать линейный список. Просмотреть линейный список из головы и составить из символов строку.
- •Раздел varchar(50),
- •15.1 Архитектура памяти в Win32. Виртуальное адресное пространство. Регионы в адресном пространстве. Передача региону физической памяти.
- •15.2 Особенности поиска решений в игровых задачах
- •16.1 Работа с файлами в Win32.
- •4) GetVolumeInformation возвращает информацию о файловой системе и дисках (директориях ).
- •7) GetComputerName, GetUserNameA
- •8) GetSystemDirectory, GetTempPath, GetWindowsDirectory, GetCurrentDirectory
- •16.2 Представление задач в пространстве состояний
- •16.3 Лвс Ethernet. Общая шина: Метод доступа.
- •16.4 Представить многочлен в виде линейного списка. Написать прогу кот выполняет сложение многочленов
- •17.1 Файлы, проецируемые в память.
- •17.2 Алгоритмы перебора в ширину и глубину в пространстве состояний
- •Алгоритм равных цен
- •Изменения при переборе в произвольных графах.
- •17.3 Повторители Ethernet. Разрешение коллизий.
- •17.4 Написать процедуру, которая осуществляет сложение целых чисел произвольной длины(двухсвязный список)
- •17.5Выдает список работников работают над проектом
- •18.1 Многозадачность. Распределение времени с вытеснением. Очереди потока и обработка сообщений. Архитектура очередей сообщений в Win32.
- •18.2 Алгоритм упорядочения поиска в пространстве состояний.
- •18.3 Лвс Token Ring. Функциональные процессы.Процесс инициализации станции
- •18.5 Выдает список поставщиков
- •19.1 Многозадачность. Распределение времени с вытеснением. Очереди потока и обработка сообщений. Архитектура очередей сообщений в Win32.
- •19.2 Метод сведения задач к подзадачам
- •19.3 Принципы межсетевого взаимодействия. Протокол ip.
- •19.4 Параметризированный ограниченный массив
- •20.1 Конструктивная модель стоимости сосомо.
- •20.2 Основные методы поиска в "и–или" деревьях Перебор в ширину в деревьях и – или.
- •Построение потенциального дерева решений t0. Эвристический поиск в деревьях и-или Стоимость деревьев типа и-или.
- •20.3 Протокол dhcp.
- •20.4 Параметризованная функция бинарного поиска в массиве
- •21.1 Основы com. Объект com. Серверы com. Фабрика класса. Интерфейс iUnknown.
- •2 Вариант ответа
- •21.2 Алгоритм упорядочения перебора при сведении задач к подзадачам
- •21.3 Разрешение имен узлов при помощи dns.
- •21.4 В области памяти, адресуемой регистром si нах-ся цепочка семибитных кодов символов….
- •22.1 Архитектура unix. Ядро системы. Файловая система. Типы файлов.
- •22.2 Проектирование приложений в системе клиент - сервер.
- •22.3 Протокол arp
- •22.4 Дан файл целых чисел компоненты которого различны, сформировать циклический линейный список, задать число n и удалять n-ый элемент в списке пока не останется 1
- •1 Вариант
- •2 Вариант
- •23.1 Командный интерпретатор shell. Общий синтаксис скрипта. Переменные. Команды, функции и программы. Условные выражения. Интерпретатор shell
- •23.2 Способы доступа к бд из приложений. Формы для просмотра.
- •Формы для ввода данных.
- •Проектирование отчетов.
- •Тестирование приложения.
- •23.3 Лвс Token Ring. Функциональные станции.
- •23.4 Вычислить значение арифметического выражения, преобразовав его в постфиксную форму. Предусмотреть со скобками и без скобок.(со стеком)
- •24.1 Файловая система ntfs.
- •24.2 Полнота реляционной субд (12 правил Кодда)
- •24.3 Модель взаимного соединения открытых систем.
- •24.4 // Сформировать числовой файл и отсортировать его компоненты с помощью двух стеков.
- •25.1 Функции dos , используемые при создании пользовательского вектора прерывания (Проиллюстрировать программой)
- •25.2 Распределенные базы данных.
- •25.3 Коммутаторы Ethernet
- •25.4 Дан файл символов сформировать дерево поиска описав процедуру удаления элнмента из дерева и функцию подсчета листьев в дереве.
14.2 "" Процедура в игровых задачах
В минимаксной процедуре процесс перебора отделён от оценок позиций. Оценки производятся только после построения дерева решений. Можно добиться существенного снижения объёма перебора, если оценки вести одновременно с построением дерева решений.
После того, как найден выигрышный ход для второго игрока, процесс перебора в И-вершине можно не продолжать. Можно не продолжать раскрытие и тех И-вершин, для которых текущие оценки меньше уже полученных до этого И-вершин.
Для ИЛИ-вершин статическая оценочная функция не может увеличиваться. Не раскрываются дальше те вершины, для которых оценочная функция больше, чем уже полученная раннее оценочная функция соседней ИЛИ-вершины.
Предварительные оценочные функции для И-вершин называются a -величинами. Для вершин ИЛИ - b -величинами. Прекращение перебора в связи с нарушением неравенства называются, соответственно, a или b отсечениями. Весь процесс- a b -процедурой. Называется обратным усечением дерева решений.
Правила a b -процедуры:
1)Перебор можно прекратить ниже любой ИЛИ-вершины, для которой оценочная величина не больше, чем оценочная величина предшествующей И-вершины.
2) Можно прервать перебор ниже любой И-вершины, оценочная функция которой не меньше, чем оценочная функция предшествующей ИЛИ-вершины.
Минимаксную процедуру можно улучшить, если к обращённым величинам для И-вершин добавить фиксированное значение и эту же фиксированную величину вычесть из обращённых величин ИЛИ-вершин. При этом увеличивают оценки только тех И-вершин, в которых есть несколько хороших вершин, а уменьшают оценки тех ИЛИ-вершин, для которых есть несколько плохих порождённых вершин.
a b -процедура не приводит к потере лучших ходов, т.е. она даёт тот же результат, что и минимаксная процедура.
При построении a b -процедур, обычно используют перебор в глубину. При этом в первую очередь раскрывают лучшую вершину на каждом этапе перебора. Такая a b -процедура называется процедурой с фиксированным упорядочиванием.
Обычно в играх двух игроков применяют две формы обучения: накопление и обобщение.
Накопление заключается в хранении в памяти машины большого числа конфигураций игры вместе со статическими оценочными функциями. Если в процессе сопоставления устанавливается соответствие между положением на доске и хранимым положением, то не нужно строить дерево, оценка выполняется сразу. Для выделения наиболее встречающихся комбинаций, ведётся подсчёт обращений к ним и их список перестраивается таким образом, чтобы в начале шли наиболее встречающиеся комбинации. Если с момента последнего обращения прошло много шагов, то комбинация удаляется из списка.
Обобщение позволяет в процессе игры учитывать статическую оценочную функцию. Сложная статическая функция обычно оценивается аддитивным критерием:
S=k1a1+k2a2+…+knan
Где а1,…,аn - значения критериев; k1,…,kn - весовые коэффициенты.
В методе обобщения весовые коэффициенты ki медленно изменяются в направлении улучшения качества игры. ki обычно увеличиваются для тех критериев, значения которых больше при последних обращениях
Оценка эффективности ab -отсечения.
Эффективность a b -процедуры оценивается числом отсечённых вершин.
Пусть дерево перебора имеет глубину D, и у каждой вершины есть В порождённых вершин. Тогда дерево будет иметь BD концевых вершин. Предположим, что в a b -процедуре истинных оценок, для ИЛИ-вершин максимальное количество, а в И-вершинах - минимальное. Такой порядок максимизирует число отсечений. Тогда лучший перебор определяется числом порожденных вершин.

Эффективность a b - отсечений оценивается параметром n:
![]()
где N - общее число раскрытых вершин для одного хода.
