- •Временной анализ цепей на основе свертки
- •1.1 Переходная и импульсная характеристика
- •1.2. Интеграл Дюамеля
- •1.3. Интеграл наложения
- •2. Спектральный анализ сигналов
- •2.1. Введение в спектральное оценивание
- •2.1.1. Задача спектрального оценивания
- •2.1.2. Проблемы в области спектрального оценивания
- •2.1.3. Спектральные оценки по конечным последовательностям данных
- •2.1.4. Общая картина
- •2.2. Основные определения и теоремы классического спектрального анализа
- •2.2.1. Непрерывно-временное преобразование Фурье.
- •2.2.2. Анализ эргодичных дискретных процессов
- •2.3. Классические методы спектрального анализа.
- •2.3.1. Введение
- •2.3.2. Окна данных и корреляционные окна в спектральном анализе.
- •2.3.3. Периодограммные оценки Спектральной Плотности Мощности.
- •2.3.4. Коррелограммные оценки Спектральной Плотности Мощности
- •3. Радиосигналы с амплитудной, угловой модуляцией
- •3.1. Введение
- •3.2. Виды модуляции
- •3.2.1. Амплитудная модуляция (am)
- •3.2.2. Частотная модуляция, фазовая модуляция
- •3.2.3. Импульсная модуляция (им)
- •4. Корреляционный анализ
- •5. Активные линейные цепи
- •5.1 Линейные электрические цепи при несинусоидальных периодических токах
- •5.2 Характеристики несинусоидальных величин
- •5.2. Разложение периодических несинусоидальных кривых в ряд Фурье
- •5.3. Свойства периодических кривых, обладающих симметрией
- •5.4. Действующее значение периодической несинусоидальной переменной
- •5.5. Мощность в цепях периодического несинусоидального тока
- •5.6. Методика расчета линейных цепей при периодических
- •6. Анализ происхождения сигналов через узкополосные цепи
- •7. Отрицательная обратная связь в линейных цепях
- •7.1. Обратная связь в радиоэлектронных устройствах
- •7.2. Классификация обратных связей
- •7.3. Свойства и применение обратной связи.
- •8. Синтез фильтров
- •Нелинейные цепи и методы их анализа
- •9.1. Метод графического интегрирования
- •9.2. Метод изоклин
- •9.3. Метод фазовой плоскости
- •9.4. Численные методы расчета переходных процессов
- •9.5. Метод переменных состояния
- •9.6. Методика составления уравнений состояния на основе принципа наложения
- •9.7. Метод дискретных моделей
- •Цепи с переменныеми параметрами
- •11. Принципы генерирования гармонических колебаний
- •Принципы обработки сигналов дискретного времени
- •12.1. Дискретное преобразование Фурье
- •Рассмотрим некоторый периодический сигнал X(t) c периодом равным t. Разложим его в ряд Фурье:
- •Используя соотношение: , получаем:
- •Матрица а имеет вид:
- •1 Линейность
- •13. Случайные сигналы
- •13.1. Случайные процессы и функции
- •14. Анализ прохождения случайных сигналов через линейные цепи
- •15. Анализ прохождения случайных сигналов через нелинейные цепи
- •16. Оптимальная фильтрация детерминированных сигналов в шумах
- •16.1. Выделение периодического сигнала из аддитивной его смеси с шумом, когда период не известен.
- •16.2. Выделение гармонического сигнала из шума, когда его период известен.
- •16.4. Супергетеродинный приёмник — аналоговый корреляционный фильтр
- •16.5. Оптимальный прием сложного периодического сигнала
- •16.5.1. Периодическая последовательность прямоугольных импульсов
- •16.5.2. Оптимальный фильтр для периодической последовательности радиоимпульсов
- •16.5.3. Оценка возможного выигрыша в отношении сигнал / шум при дискретной записи сигнала.
- •17. Оптимальная фильтрация случайных сигналов
- •17.1. Фильтрация случайных сигналов
- •17.2. Спектры мощности случайных сигналов
- •18. Численные методы расчета линейных цепей
2.2.2. Анализ эргодичных дискретных процессов
Определение:
Дискретный случайный процесс
эргодичен
в среднем если
![]()
Определение:
Дискретный случайный процесс
автокорреляционно
эргодичен если
![]()
Допущение об эргодичности позволяет не только ввести через усреднение по времени определения для среднего значения и автокорреляции, но позволяет дать подобное определение спектральной плотности мощности :
Определение:

Эта
эквивалентная форма спектральной
плотности мощности получается посредством
статистического усреднения модуля
дискретно-временного преобразования
Фурье взвешенной совокупности данных,
для случая когда число отсчетов данных
увеличивается до бесконечности.
Статистическое усреднение необходимо
здесь потому, что дискретно-временное
преобразование само является случайной
величиной, изменяющейся для каждой
используемой реализации
.
Это определение эквивалентно определению
спектральной плотности мощности как
дискретно-временное преобразование
Фурье автокорреляционной последовательности.
Если в последнем определении не учитывать операцию математического ожидания, то получим оценку спектральной плотности мощности, которая называется выборочным спектром :

Хотя выборочный спектр не является состоятельной оценкой истинной спектральной плотности мощности, эта оценка может быть использована если выполнять некоторого рода усреднение или сглаживания. На использовании этой оценки основан классический периодограммый метод определения спектральной плотности мощности.
2.3. Классические методы спектрального анализа.
2.3.1. Введение
Оценки СПМ, основанные на прямом преобразовании данных и последующем усреднении, получили название периодограмм. Оценки СПМ, для получения которых по исходным данным сначала формируется корреляционные оценки, получили название коррелограммных методов спектрального оценивания.
При использовании любого метода оценивания СПМ пользователю приходится принимать множество компромиссных решений, с тем, чтобы по конечному количеству отсчетов данных получать статистически устойчивые спектральные оценки с максимально возможным разрешением. К этим компромиссным решениям относятся, в частности, выбор таких функций окна для взвешивания данных и корреляционных функций и таких параметров усреднения во временной и в частотной областях, которые позволяют сбалансировать требования к снижению уровня боковых лепестков, выполнению эффективного усреднения по ансамблю и к обеспечению приемлемого спектрального разрешения. Устойчивые результаты (малые спектральные флюктуации) и хорошая точность (малое смещение относительно истинных спектральных значений на всех частотах) достижимы только тогда, когда произведение TB, где Т - полный интервал записи данных, а B - эффективное разрешение по частоте, значительно превышает единицу. Все эти компромиссы можно количественно охарактеризовать в случае гауссовских процессов, для которых подробно теоретически изучены статистические характеристики классических спектральных оценок. Однако выбор конкретного метода спектрального оценивания в случае негауссовских процессов зачастую обосновывается только экспериментальными данными. Да и выбор функции окна очень часто основывается на данных экспериментальных, а не теоретических исследований.
