- •Временной анализ цепей на основе свертки
- •1.1 Переходная и импульсная характеристика
- •1.2. Интеграл Дюамеля
- •1.3. Интеграл наложения
- •2. Спектральный анализ сигналов
- •2.1. Введение в спектральное оценивание
- •2.1.1. Задача спектрального оценивания
- •2.1.2. Проблемы в области спектрального оценивания
- •2.1.3. Спектральные оценки по конечным последовательностям данных
- •2.1.4. Общая картина
- •2.2. Основные определения и теоремы классического спектрального анализа
- •2.2.1. Непрерывно-временное преобразование Фурье.
- •2.2.2. Анализ эргодичных дискретных процессов
- •2.3. Классические методы спектрального анализа.
- •2.3.1. Введение
- •2.3.2. Окна данных и корреляционные окна в спектральном анализе.
- •2.3.3. Периодограммные оценки Спектральной Плотности Мощности.
- •2.3.4. Коррелограммные оценки Спектральной Плотности Мощности
- •3. Радиосигналы с амплитудной, угловой модуляцией
- •3.1. Введение
- •3.2. Виды модуляции
- •3.2.1. Амплитудная модуляция (am)
- •3.2.2. Частотная модуляция, фазовая модуляция
- •3.2.3. Импульсная модуляция (им)
- •4. Корреляционный анализ
- •5. Активные линейные цепи
- •5.1 Линейные электрические цепи при несинусоидальных периодических токах
- •5.2 Характеристики несинусоидальных величин
- •5.2. Разложение периодических несинусоидальных кривых в ряд Фурье
- •5.3. Свойства периодических кривых, обладающих симметрией
- •5.4. Действующее значение периодической несинусоидальной переменной
- •5.5. Мощность в цепях периодического несинусоидального тока
- •5.6. Методика расчета линейных цепей при периодических
- •6. Анализ происхождения сигналов через узкополосные цепи
- •7. Отрицательная обратная связь в линейных цепях
- •7.1. Обратная связь в радиоэлектронных устройствах
- •7.2. Классификация обратных связей
- •7.3. Свойства и применение обратной связи.
- •8. Синтез фильтров
- •Нелинейные цепи и методы их анализа
- •9.1. Метод графического интегрирования
- •9.2. Метод изоклин
- •9.3. Метод фазовой плоскости
- •9.4. Численные методы расчета переходных процессов
- •9.5. Метод переменных состояния
- •9.6. Методика составления уравнений состояния на основе принципа наложения
- •9.7. Метод дискретных моделей
- •Цепи с переменныеми параметрами
- •11. Принципы генерирования гармонических колебаний
- •Принципы обработки сигналов дискретного времени
- •12.1. Дискретное преобразование Фурье
- •Рассмотрим некоторый периодический сигнал X(t) c периодом равным t. Разложим его в ряд Фурье:
- •Используя соотношение: , получаем:
- •Матрица а имеет вид:
- •1 Линейность
- •13. Случайные сигналы
- •13.1. Случайные процессы и функции
- •14. Анализ прохождения случайных сигналов через линейные цепи
- •15. Анализ прохождения случайных сигналов через нелинейные цепи
- •16. Оптимальная фильтрация детерминированных сигналов в шумах
- •16.1. Выделение периодического сигнала из аддитивной его смеси с шумом, когда период не известен.
- •16.2. Выделение гармонического сигнала из шума, когда его период известен.
- •16.4. Супергетеродинный приёмник — аналоговый корреляционный фильтр
- •16.5. Оптимальный прием сложного периодического сигнала
- •16.5.1. Периодическая последовательность прямоугольных импульсов
- •16.5.2. Оптимальный фильтр для периодической последовательности радиоимпульсов
- •16.5.3. Оценка возможного выигрыша в отношении сигнал / шум при дискретной записи сигнала.
- •17. Оптимальная фильтрация случайных сигналов
- •17.1. Фильтрация случайных сигналов
- •17.2. Спектры мощности случайных сигналов
- •18. Численные методы расчета линейных цепей
9.7. Метод дискретных моделей
Метод основан на использовании дискретных моделей индуктивного и емкостного элементов и позволяет свести численный анализ динамических процессов в нелинейных цепях к последовательному расчету на каждом шаге нелинейных резистивных цепей.
Дискретные модели вытекают из неявных алгоритмов, в частности из обратной формулы Эйлера. Эти модели, полученные на основе неявного алгоритма Эйлера, а также выражения для параметров входящих в них элементов приведены в табл. 1.
Таблица 9.1. Дискретные модели индуктивного и емкостного элементов
|
Тип элемента |
Аналитические соотношения |
Дискретная модель |
||||
|
|
|
Примечание: если
емкостный и индуктивный элементы
линейные и
то
и
.
Метод дискретных моделей хорошо поддается машинной алгоритмизации и используется для расчета сложных нелинейных цепей на ЭВМ. Для достаточно простых схем он может быть реализован ’’вручную’’.
Последовательность расчета нелинейной цепи методом дискретных моделей иллюстрируется приведенным ниже примером решения задачи.
В цепи на рис. 3
предыдущей задачи ЭДС источника Е
= 1В;
1Ом;
4
Ом. Вебер - амперная характеристика
нелинейной катушки индуктивности
аппроксимирована выражением
где
ток – в амперах, потокосцепление – в
веберах.
Рассчитать ток i в цепи после замыкания ключа
.
Решение
1. Нарисуем расчетную дискретную схему замещения цепи (см. рис. 9.4).
Д
ля
этой схемы справедливо
|
|
( |
где в соответствии с табл. 1
![]()
|
|
Значение дифференциальной индуктивности нелинейной катушки на k-м шаге
|
|
( |
Выберем шаг
интегрирования
На
основании закона коммутации
Тогда
и
в соответствии с (7)
.
Параметры элементов схемы
замещения:
откуда
на основании (6)

На следующем
шаге
тогда
и
параметры элементов схемы
замещения
откуда

Результаты пошагового расчета согласно приведенному алгоритму представлены в табл. 9.2 .
Таблица 9.2. Результаты расчета
|
|
|
|
|
|
|
|
|
|
|
с |
А |
Вб |
Гн |
Ом |
В |
А |
|
0 |
0 |
0,2 |
0,585 |
0,974 |
0,974 |
0,195 |
0,605 |
|
1 |
1 |
0,605 |
0,846 |
0,466 |
0,466 |
0,282 |
0,874 |
|
2 |
2 |
0,874 |
0,956 |
0,365 |
0,365 |
0,319 |
0,966 |
|
3 |
3 |
0,966 |
0,989 |
0,341 |
0,341 |
0,329 |
0,99 |
|
4 |
4 |
0,99 |
0,997 |
0,335 |
0,335 |
0,332 |
0,998 |




