- •Временной анализ цепей на основе свертки
- •1.1 Переходная и импульсная характеристика
- •1.2. Интеграл Дюамеля
- •1.3. Интеграл наложения
- •2. Спектральный анализ сигналов
- •2.1. Введение в спектральное оценивание
- •2.1.1. Задача спектрального оценивания
- •2.1.2. Проблемы в области спектрального оценивания
- •2.1.3. Спектральные оценки по конечным последовательностям данных
- •2.1.4. Общая картина
- •2.2. Основные определения и теоремы классического спектрального анализа
- •2.2.1. Непрерывно-временное преобразование Фурье.
- •2.2.2. Анализ эргодичных дискретных процессов
- •2.3. Классические методы спектрального анализа.
- •2.3.1. Введение
- •2.3.2. Окна данных и корреляционные окна в спектральном анализе.
- •2.3.3. Периодограммные оценки Спектральной Плотности Мощности.
- •2.3.4. Коррелограммные оценки Спектральной Плотности Мощности
- •3. Радиосигналы с амплитудной, угловой модуляцией
- •3.1. Введение
- •3.2. Виды модуляции
- •3.2.1. Амплитудная модуляция (am)
- •3.2.2. Частотная модуляция, фазовая модуляция
- •3.2.3. Импульсная модуляция (им)
- •4. Корреляционный анализ
- •5. Активные линейные цепи
- •5.1 Линейные электрические цепи при несинусоидальных периодических токах
- •5.2 Характеристики несинусоидальных величин
- •5.2. Разложение периодических несинусоидальных кривых в ряд Фурье
- •5.3. Свойства периодических кривых, обладающих симметрией
- •5.4. Действующее значение периодической несинусоидальной переменной
- •5.5. Мощность в цепях периодического несинусоидального тока
- •5.6. Методика расчета линейных цепей при периодических
- •6. Анализ происхождения сигналов через узкополосные цепи
- •7. Отрицательная обратная связь в линейных цепях
- •7.1. Обратная связь в радиоэлектронных устройствах
- •7.2. Классификация обратных связей
- •7.3. Свойства и применение обратной связи.
- •8. Синтез фильтров
- •Нелинейные цепи и методы их анализа
- •9.1. Метод графического интегрирования
- •9.2. Метод изоклин
- •9.3. Метод фазовой плоскости
- •9.4. Численные методы расчета переходных процессов
- •9.5. Метод переменных состояния
- •9.6. Методика составления уравнений состояния на основе принципа наложения
- •9.7. Метод дискретных моделей
- •Цепи с переменныеми параметрами
- •11. Принципы генерирования гармонических колебаний
- •Принципы обработки сигналов дискретного времени
- •12.1. Дискретное преобразование Фурье
- •Рассмотрим некоторый периодический сигнал X(t) c периодом равным t. Разложим его в ряд Фурье:
- •Используя соотношение: , получаем:
- •Матрица а имеет вид:
- •1 Линейность
- •13. Случайные сигналы
- •13.1. Случайные процессы и функции
- •14. Анализ прохождения случайных сигналов через линейные цепи
- •15. Анализ прохождения случайных сигналов через нелинейные цепи
- •16. Оптимальная фильтрация детерминированных сигналов в шумах
- •16.1. Выделение периодического сигнала из аддитивной его смеси с шумом, когда период не известен.
- •16.2. Выделение гармонического сигнала из шума, когда его период известен.
- •16.4. Супергетеродинный приёмник — аналоговый корреляционный фильтр
- •16.5. Оптимальный прием сложного периодического сигнала
- •16.5.1. Периодическая последовательность прямоугольных импульсов
- •16.5.2. Оптимальный фильтр для периодической последовательности радиоимпульсов
- •16.5.3. Оценка возможного выигрыша в отношении сигнал / шум при дискретной записи сигнала.
- •17. Оптимальная фильтрация случайных сигналов
- •17.1. Фильтрация случайных сигналов
- •17.2. Спектры мощности случайных сигналов
- •18. Численные методы расчета линейных цепей
5. Активные линейные цепи
5.1 Линейные электрические цепи при несинусоидальных периодических токах
Предыдущие лекции были посвящены анализу электрических цепей при синусоидальных токах и напряжениях. На практике ЭДС и токи в большей или меньшей степени являются несинусоидальными. Это связано с тем, что реальные генераторы не обеспечивают, строго говоря, синусоидальной формы кривых напряжения, а с другой стороны, наличие нелинейных элементов в цепи обусловливает искажение формы токов даже при синусоидальных ЭДС источников.
На практике к несинусоидальности напряжений и токов следует подходить двояко:
-
в силовой электроэнергетике несинусоидальные токи обусловливают в общем случае дополнительные потери мощности, пульсации момента на валу двигателей, вызывают помехи в линиях связи; поэтому здесь необходимо «всеми силами» поддержание синусоидальных режимов;
-
в цепях автоматики и связи, где несинусоидальные токи и напряжения лежат в основе принципа действия электротехнических устройств, задача наоборот заключается в их усилении и передаче с наименьшими искажениями.
В общем случае характер изменения величин может быть периодическим, почти периодическим и непериодическим. В данном разделе будут рассматриваться цепи только с периодическими переменными.
Периодическими несинусоидальными величинами называются переменные, изменяющиеся во времени по периодическому несинусоидальному закону. Причины возникновения несинусоидальных напряжений и токов могут быть обусловлены или несинусоидальностью источника питания или (и) наличием в цепи хотя бы одного нелинейного элемента. Кроме того, в основе появления несинусоидальных токов могут лежать элементы с периодически изменяющимися параметрами.
В качестве примера на рис. 5.1,а представлена цепь с нелинейным резистором (НР), нелинейная вольтамперная характеристика (ВАХ) которого обусловливает несинусоидальную форму тока i в цепи при синусоидальном напряжении u на ее входе (см. рис. 5.1,б).

5.2 Характеристики несинусоидальных величин
Для характеристики несинусоидальных периодических переменных служат следующие величины и коэффициенты (приведены на примере периодического тока):
-
Максимальное значение -
. -
Действующее значение -
. -
Среднее по модулю значение -
. -
Среднее за период значение (постоянная составляющая) -
. -
Коэффициент амплитуды (отношение максимального значения к действующему) -
. -
Коэффициент формы (отношение действующего значения к среднему по модулю) -
. -
Коэффициент искажений (отношение действующего значения первой гармоники к действующему значению переменной) -
. -
Коэффициент гармоник (отношение действующего значения высших гармонических к действующему значению первой гармоники) -
.
5.2. Разложение периодических несинусоидальных кривых в ряд Фурье
Из математики
известно, что всякая периодическая
функция
,
где Т – период, удовлетворяющая условиям
Дирихле, может быть разложена в
тригонометрический ряд. Можно отметить,
что функции, рассматриваемые в
электротехнике, этим условиям
удовлетворяют, в связи с чем проверку
на их выполнение проводить не нужно.
При разложении в ряд Фурье функция представляется следующим образом:
|
|
( |
Здесь
-
постоянная составляющая или нулевая
гармоника;
-
первая (основная) гармоника, изменяющаяся
с угловой частотой
,
где Т – период несинусоидальной
периодической функции.
В выражении
,
где коэффициенты
и
определяются
по формулам
;
.

.