Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на Щаденкова.doc
Скачиваний:
15
Добавлен:
27.10.2018
Размер:
2.28 Mб
Скачать

24 Трехфазные инверторы

Трехфазные инверторы могут быть использованы в двух режимах:

1) 120-градусный режим работы;

2) 180-градусные режимы работы.

120-градусный режим работы

Тиристоры здесь нумеруются по аналогии с трехфазными двухполупериодными выпрямителями. Разность номеров тиристоров в каждой фазе равна трем. К трехфазному мостовому инвертору подключена активная нагрузка, состоящая из трех резисторов, как показано на рис.8. При 120-градусном режиме работы каждый тиристор находится в проводя­щем состоянии от 0 до 120° за период. В любое время два тиристора в этой схеме находятся в проводящем состоянии, и два из трех нагрузоч­ных резисторов являются потребителями мощности. Когда тиристор из нечетной группы находится в проводящем состоянии, соответствующее ему фазовое напряжение - положительное. Если же в проводящем состоянии находится тиристор из четной группы, соответствующее ему фазовое напряжение отрицательное. Фазовые напряжения здесь представляют собой 120-градусные псевдопрямоугольные последова­тельности импульсов. Выходные линейные напряжения имеют формы шестиступенчатых последовательностей импульсов, сдвинутых на 120° по отношению друг к другу. Формы фазовых и линейных напряжений приведены на рис.8б.

Запуск тиристоров в этой схеме осуществляется в последователь­ности 61-12-23-34-45-56. Выходная частота определяется частотой запуска тиристоров.

Рис.8а - 120-градусный режим работы инвертора Схема трехфазного мостового инвертора

Рис.8б - 120-градусный режим работы инвертора Формы фазовых и

линейных напряжений

180-градусный режим работы

При 180-градусном режиме каждый тиристор находится в состоянии проводимости половину периода. В этом режиме работы инвертора воз­можны два способа коммутации тиристоров - два тиристора из нечетной группы и один тиристор из четной группы или два из четной группы и один из нечетной группы находятся в проводящем состоянии.

Фазовое напряжение инвертора будет положительным, если ти­ристоры из нечетной группы находятся в проводящем состоянии, и отрицательным, если тиристоры четной группы находятся в проводящем состоянии. В любое время два нагрузочных резистора подключены к источнику питания параллельно, а третий подключен последователь­но к ним. На двух параллельно соединенных резисторах выходное напряжение будет V/3, а на третьем - 2 К/3.

Рис. 9 - 180-градусныи режим работы инвертора

а) Схема трехфазного мостового инвертора,

б) Формы фазовых и линейных напряжений

Линейные напряжения здесь представляют собой 120-градусные псевдопрямоугольные последова­тельности импульсов. Выходные фазовые напряжения инвертора имеют формы шестиступенчатых последовательностей импульсов, сдвинутых на 120° по отношению друг к другу. Формы фазовых и линейных напря­жений приведены на рис.9б. Тиристоры в этой схеме запускаются в последовательности 561-612-123-234-345-456. Выходная частота определяется частотой запуска тиристоров.

Силовые биполярные транзисторы с изолированным затвором (IGBT)

Биполярный транзистор с изолированным затвором (IGBT - Insulated Gate Bipolar Transistors) - полностью управляемый полупроводниковый прибор, в основе которого трёхслойная структура. Его включение и выключение осуществляются подачей и снятием положительного напряжения между затвором и истоком. На рис.1 приведено условное обозначение IGBT.

Рис. 1. Условное обозначение IGBT Рис. 2. Схема соединения транзисторов в единой структуре IGBT

IGBT являются продуктом развития технологии силовых транзисторов со структурой металл-оксид-полупроводник, управляемых электрическим полем (MOSFET-Metal-Oxid-Semiconductor-Field-Effect-Transistor) и сочетают в себе два транзистора в одной полупроводниковой структуре: биполярный (образующий силовой канал) и полевой (образующий канал управления). Эквивалентная схема включения двух транзисторов приведена на рис. 2. Прибор введён в силовую цепь выводами биполярного транзистора E (эмиттер) и C (коллектор), а в цепь управления - выводом G (затвор).

Таким образом, IGBT имеет три внешних вывода: эмиттер, коллектор, затвор. Соединения эмиттера и стока (D), базы и истока (S) являются внутренними. Сочетание двух приборов в одной структуре позволило объединить достоинства полевых и биполярных транзисторов: высокое входное сопротивление с высокой токовой нагрузкой и малым сопротивлением во включённом состоянии.

Рис. 3. Диаграмма напряжения и тока управления

Схематичный разрез структуры IGBT показан на рис. 4,а. Биполярный транзистор образован слоями p+ (эмиттер), n (база), p (коллектор); полевой - слоями n (исток), n+ (сток) и металлической пластиной (затвор). Слои p+ и p имеют внешние выводы, включаемые в силовую цепь. Затвор имеет вывод, включаемый в цепь управления. На рис. 4,б изображена структура IGBT IV поколения, выполненого по технологии "утопленного" канала (trench-gate technology), позволяющей исключить сопротивление между p-базами и уменьшить размеры прибора в несколько раз.

Рис. 4. Схематичный разрез структуры IGBT: а-обычного (планарного); б-выполненого по "trench-gate technology"