
- •«Вологодский колледж связи и информационных технологий»
- •Развитие геометрии во времени
- •1. Математические понятия в палеолите и неолите
- •Во многих странах людей, занимавшихся межеванием, называли
- •2. Геометрические сведения в Древнем Египте
- •3.Кратко о развитии геометрии в Древней Греции до Евклида
- •4.Постулаты Евклида
- •Постулаты
- •Александрийская школа.
- •1. Герон Александрийский
- •2. Никомах, Менелай
- •3. Клавдий Птолемей
- •4. Папп
- •5. Диофант
- •6. Теон и Гипатия
- •VIII. Упадок Александрийской школы
4.Постулаты Евклида
Евклид – автор первого дошедшего до нас строгого логического построения геометрии. В нем изложение настолько безупречно для своего времени, что в течение двух тысяч лет с момента появления его труда «Начал» оно было единственным руководством для изучающих геометрию.
«Начала» состоят из 13 книг, посвященных геометрии и арифметике в геометрическом изложении.
Каждая книга «Начал» начинается определением понятий, которые встречаются впервые. Так, например, первой книге предпосланы 23 определения. В частности,
Определение 1. Точка есть то, что не имеет частей.
Определение 2. Линия есть длины без ширины
Определение 3. Границы линии суть точки.
Вслед за определениями Евклид приводит постулаты и аксиомы, то есть утверждения, принимаемые без доказательства.
Постулаты
I. Требуется, чтобы от каждой точки ко всякой другой точке можно было провести прямую линию.
II . И чтобы каждую прямую можно было неопределенно продолжить.
III. И чтобы из любого центра можно было описать окружность любым радиусом.
IV. И чтобы все прямые углы были равны.
V. И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними односторонние внутренние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых.
Аксиомы
I. Равные порознь третьему равны между собой.
II. И если к ним прибавим равные, то получим равные.
III. И если от равных отнимем равные, то получим равные.
IV. И если к неравным прибавим равные, то получим неравные.
V. И если удвоим равные, то получим равные.
VI. И половины равных равны между собой.
VII. И совмещающиеся равны.
VIII. И целое больше части.
IX. И две прямые не могут заключать пространства.
Иногда IV и V постулаты относят к числу аксиом. Поэтому пятый постулат иногда называют XI аксиомой. По какому принципу одни утверждения относятся к постулатам, а другие к аксиомам, неизвестно.
Никто не сомневался в истинности постулатов Евклида, что касается и V постулата. Между тем уже с древности именно постулат о параллельных привлек к себе особое внимание ряда геометров, считавших неестественным помещение его среди постулатов. Вероятно, это было связано с относительно меньшей очевидностью и наглядностью V постулата: в неявном виде он предполагает достижимость любых, как угодно далеких частей плоскости, выражая свойство, которое обнаруживается только при бесконечном продолжении прямых.
Александрийская школа.
1. Герон Александрийский
К числу представителей Александрийской школы в начале второго периода ее существования надо отнести Герона Александрийского, жившего, вероятно, в I в. до н. э. Герон был выдающимся греческим инженером и ученым. Он известен многими своими изобретениями, работами геодезического характера, а также математическими работами, относящимися главным образом к вопросам геометрической метрики. Из его работ, имеющих значение для математики, можно отметить «Метрику» и «О диоптре». В «Метрике» приводятся правила и указания для точного и приближенного вычисления площадей и объемов различных фигур и тел; среди них имеется и формула для определения площади треугольника по трем его сторонам, вошедшая в математику под именем формулы Герона. Кроме того, в этой работе указываются примеры решения квадратных уравнений и приближенного вычисления квадратных и кубических корней. Характерной особенностью «Метрики», выделяющей ее из ряда работ других греческих геометров, предшествовавших Герону, служит то обстоятельство, что в ней обычно правила даются без доказательств, а лишь выясняются на отдельных примерах. Это значительно снижает достоинства работы и, несомненно, является признаком недостаточной научной подготовки её автора. Но в области практических, приложений математики Герон превосходит многих своих предшественников. Лучшей иллюстрацией этого является его работа «О диоптре». В этом труде излагаются методы различных работ геодезического характера, причем землемерная съемка производится с помощью изобретенного Героном прибора диоптры. Этот прибор является прообразом современного теодолита. Главной его частью служила линейка с укрепленными на концах ёе визирами. Эта линейка вращалась по кругу, который мог занимать и горизонтальное, и вертикальное положение, что давало возможность намечать направления как в горизонтальной, так и в вертикальной плоскости. Для правильности установки прибора к нему присоединялись отвес и уровень. Пользуясь этим прибором и вводя фактически в употребление прямоугольные координаты, Герон мог решать на местности различные задачи: измерить расстояние между двумя точками, когда одна из них или обе недоступны наблюдателю; провести прямую, перпендикулярную к недоступной прямой линии; найти разность уровней между двумя пунктами; измерить площадь простейшей фигуры, не вступая на измеряемую площадку.
Сочинения Герона давали его современникам богатый материал, практическое использование которого вполне удовлетворяло вопросам строительства и земледелия, а потому эти сочинения пользовались большим успехом в продолжение многих столетий.