Добавил:
ilirea@mail.ru Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_na_ekzamen_po_giste.doc
Скачиваний:
315
Добавлен:
22.08.2018
Размер:
893.44 Кб
Скачать

17. Основные положения кл. Теории. Значение цитологии для медицины.

Клеточная теория – теория, обобщающая знаний по естествознанию. Шванн в 1839 г. опубликовал труд «Мик­роскопические исследования о соответствии в структуре и росте животных и растений». Основные положения современной клеточной теории:

-Клетка является наименьшей, структурной и функциональной основой живых организмов.

- Размножение клетки происходит путём деления исходной клетки.

- Клетки сходны по строению.

- Многоклеточные организмы – это сложные ансамбли клеток.

Современный период развития гистологии, цитологии и эмбриологии характеризуется широким и комплексным использованием многих методов исследования, прежде всего электронной микроскопии, метод замораживания- скалывания, электронно-микроскопической цитохимии, количественных методов. Успехи в медицине связаны с гистологическими исследованиями

Необходимым для понимания болезни является знание гистологии.

Профилактика и лечение болезни требуют знание генетики.

2. Общая гистология. Учение о гистологических тканях.

1. Ткань, как один из уровней организации живого. Определение. Классификация. Восстановительная способность и пределы изменчивости тканей. Значение гистологии для медицины.

Ткань — это система клеток и неклеточных структур, обладающая общностью строения, а иногда и проис­хождения, и специализированная на выполнении определенных функций.

1. Характеристика структурных компонентов ткани

Клетки — основные, функционально ведущие ком­поненты тканей. Вое ткани состоят из нескольких типов клеток. Клеточная популяция — это совокупность клеток данного типа.

Клеточный дифферон, или гистогенетический ряд, — это совокупность клеток данного типа (данной попу­ляция), находящихся на различных этапах дифференцировки.

Производные клеток:

1) симпласты (слияние отдельных клеток, например мышечное волокно);

2) синцитий (несколько клеток, соединенных между собой отростками, например сперматогеиный эпи­телий извитых канальцев семенника);

3) постклеточные образования (эритроциты, тромбо­циты).

Межклеточное вещество — также продукт деятель­ности определенных клеток. Межклеточное вещество состоит из:

1) аморфного вещества;

2) волокон (коллагеноеых, ретикулярных, эластиче­ских).

Межклеточное вещество неодинаково выражено

Классификации,тканей:

1) эпителиальные ткани;

2) соединительные ткани (ткани внутренней среды, опорно-трофические ткани);

3) мышечные ткани;

4) нервная ткань.

Тканевой гомеостаз, или поддержание структурного постоянства тканей

Регенерация тканей Формы регенерации:

1) физиологическая регенерация — восстановление клеток ткани после их естественной гибели (напри­мер, кроветворение);

2) репаративная регенерация — восстановление тка­ней и органов после их повреждения (травм, воспа­лений,хирургических воздействий и т. д.).

Интеграция тканей

Ткани входят в состав структур более высокого уровня организации живой материи: структурно-функциональных единиц органов и в состав органов, в которых происходит интеграция (объединение) нес­кольких тканей.

Механизмы интеграции:

1) межтканевые (обычно индуктивные) взаимодей­ствия;

2) эндокринные влияния;

3) нервные влияния.

Например, в состав сердца входят: сердечная мы­шечная ткань, соединительная ткань, эпителиальная ткань.

Значение гистологии для медицины.

Важная задача общей Гистология — выяснение потенций развития, присущих каждому типу дифференцированных клеток, и механизмов, регулирующих сохранение постоянства дифференцировки и ее изменения. В каждой ткани различают несколько устойчивых типов клеточной дифференцировки, например фибробласты, образующие основное вещество соединительной ткани, и эритроидные клетки, образующие и несущие дыхательные пигменты. Каждый тип дифференцировки достигается в ходе многоэтапного процесса развития ткани — гистогенеза. В клетках, выполняющих специализированные функции, реализуется лишь небольшая часть возможностей, предусмотренных генетической программой организма. Остальная, не реализуемая в дифференцированных клетках часть генетической информации сохраняется в них, но находится в неактивном, или репрессированном, состоянии. При определенных внешних воздействиях на клетку может происходить дерепрессия, и характер дифференцировки клеток может изменяться. Такие изменения происходят во многих тканях постоянно, в частности при нормальном созревании входящих в их состав клеток, когда изменчивость клеток не выходит за типичные для каждой ткани пределы. В условиях же патологии наступают более значительные изменения дифференцировки тканевых клеток, называемые метаплазией. Общая Гистология исследует гистогенезы при формировании тканей в зародышевом развитии, а также при естественном обновлении тканей у взрослых животных, при регенерации после повреждений, вызвавших усиленную гибель клеток. С этим связана проблема детерминации клеток, участвующих в обновлении тканей, и факторов, регулирующих направление и темп процесса обновления. Клеточные популяции некоторых тканей, например нервной у взрослых животных, практически не обновляются. Нервные клетки обычно долго живут, но часть их всё же гибнет с возрастом в результате напряжений, заболеваний и т.д. В большинстве же тканей (эпителии и ткани внутренней среды) часть клеток сохраняет способность к делению. В таких тканях постоянно протекают процессы смены клеток. В нормальных условиях при обновлении клеточного состава гибель одних клеток компенсируется размножением других. Этот процесс обусловлен рядом регуляторных механизмов, действующих как внутри ткани, так и в организме в целом. Ещё одна существенная задача

Гистология — выяснение механизмов взаимодействия тканей и определение природы внутритканевых и межтканевых регуляций. Свойства клеток и согласованная деятельность клеточных комплексов, образующих ткань, в значительной степени определяются внешними воздействиями как со стороны окружающих клеток, так и нервными и гуморальными влияниями. Тканевая несовместимость при пересадках органов определяется характерными реакциями клеток организма-хозяина на пересаженную ткань. Поэтому проблемы общей Гистология имеют не только биологическое, но и медицинское значение. Т. о., общая Гистология даёт основные сведения об отдельных тканях и принципах их взаимосвязей. Эти данные дополняются изучением развития, структуры и деятельности тканей в различных органах многоклеточного организма, что составляет предмет частной Гистология, которая изучает тканевую архитектуру органа, взаимодействия в нём разных тканей, внутритканевые и межтканевые регуляции, гистологические эквиваленты разных функциональных состояний органа, развитие и регенерацию его тканевых компонентов. Цель частной Гистология — познание гистологической и клеточной структуры органа, его гистохимических и гистофизиологических особенностей и в совокупности этих знаний — определение механизмов деятельности органа. 2. Ткань, как один из уровней организации живого. Определение. Классификация. Понятие о клеточных популяциях. Стволовые клетки. Их значение.

Ткань — это система клеток и неклеточных структур, обладающая общностью строения, а иногда и проис­хождения, и специализированная на выполнении определенных функций.

1. Характеристика структурных компонентов ткани

Клетки — основные, функционально ведущие ком­поненты тканей. Все ткани состоят из нескольких типов клеток. Клеточная популяция — это совокупность клеток данного типа.

Клеточный дифферон, или гистогенетический ряд, — это совокупность клеток данного типа (данной попу­ляция), находящихся на различных этапах дифференцировки.

Производные клеток:

1) симпласты (слияние отдельных клеток, например мышечное волокно);

2) синцитий (несколько клеток, соединенных между собой отростками, например сперматогеиный эпи­телий извитых канальцев семенника);

3) постклеточные образования (эритроциты, тромбо­циты).

Межклеточное вещество — также продукт деятель­ности определенных клеток. Межклеточное вещество состоит из:

1) аморфного вещества;

2) волокон (коллагеноеых, ретикулярных, эластиче­ских).

Межклеточное вещество неодинаково выражено

Классификации,тканей:

1) эпителиальные ткани;

2) соединительные ткани (ткани внутренней среды, опорно-трофические ткани);

3) мышечные ткани;

4) нервная ткань.

ОСНОВЫ КИНЕТИКИ КЛЕТОЧНЫХ ПОПУЛЯЦИЙ

Каждая ткань имеет или имела в эмбриогенезе стволовые клетки— наименее дифференцированные и наименее коммитированные. Они образуют самоподдерживающуюся популяцию, их потомки способны дифференцироваться в нескольких направлениях под влиянием микроокружения (факторов дифференцировки), образуя клетки-предшественники и, далее, функционирующие дифференцированные клетки. Таким образом, стволовые клетки полипотентны. Они делятся редко, пополнение зрелых клеток ткани, если это необходимо, осуществляется в первую очередь за счет клеток следующих генераций (клеток-предшественников). По сравнению со всеми другими клетками данной ткани стволовые клетки наиболее устойчивы к повреждающим воздействиям.

Хотя в состав ткани входят не только клетки, именно клетки являются ведущими элементами системы, т. е. определяют ее основные свойства. Их разрушение приводит к деструкции системы и, как правило, их гибель делает ткань нежизнеспособной, особенно если были затронуты стволовые клетки.

Если одна из стволовых клеток вступает на путь дифференциации, то в результате последовательного ряда коммитирующих митозов возникают сначала полустволовые, а затем и дифференцированные клетки со специфической функцией. Выход стволовой клетки из популяции служит сигналом для деления другой стволовой клетки по типу некоммитирующего митоза. Общая численность стволовых клеток в итоге восстанавливается. В условиях нормальной жизнедеятельности она сохраняется приблизительно постоянной.

Совокупность клеток, развивающихся из одного вида стволовых клеток, составляет стволовой дифферон. Часто в образовании ткани участвуют различные диффероны. Так, в состав эпидермиса, кроме кератиноцитов, входят клетки, развивающиеся в нейральном гребне и имеющие другую детерминацию (меланоциты), а также клетки, развивающиеся путем дифференциации стволовой клетки крови, т. е. принадлежащие уже к третьему дифферону (внутриэпидерминальные макрофаги, или клетки Лангерганса).

Дифференцированные клетки наряду с выполнением своих специфических функций способны синтезировать особые вещества — кейлоны, тормозящие интенсивность размножения клеток-предшественников и стволовых клеток. Если в силу каких-либо причин количество дифференцированных функционирующих клеток уменьшается (например, после травмы), тормозящее действие кейлонов ослабевает и численность популяции восстанавливается. Кроме кейлонов (местных регуляторов), клеточное размножение контролируется гормонами; одновременно продукты жизнедеятельности клеток регулируют активность желёз внутренней секреции. Если какие-либо клетки под воздействием внешних повреждающих факторов претерпевают мутации, они элиминируются из тканевой системы вследствие иммунологических реакций.

Выбор пути дифференциации клеток определяется межклеточными взаимодействиями. Влияние микроокружения изменяет активность генома дифференцирующейся клетки, активируя одни и блокируя другие гены. У клеток, уже дифференцированных и утративших способность к дальнейшему размножению, строение и функция тоже могут изменяться (например, у гранулоцитов начиная со стадии метамиелоцита). Такой процесс не приводит к возникновению различий среди потомков клетки и для него больше подходит название «специализация».

Стволовые кл: Длительное поддержание равновесного состояния в тканях, клетки которых имеют небольшой срок жизни (несколько дней или недель), обеспечивается особыми т. н. стволовыми клетками, способными к многократному делению. Стволовые клетки делятся и поддерживают собственную линию в организме в течение почти всей его жизни; они же дают начало развитию разных специализированных клеток данной ткани. Выяснение факторов, регулирующих размножение и дифференцировку стволовых клеток, а также механизмов, определяющих путь их развития, — важная проблема общей Гистологии .Способность стволовых клеток интегрироваться в трехмерные тканевые структуры организма под контролем микроокружения реципиента делает их использование идеальным подходом для цитозаместительной терапии. Первые успехи клеточных технологий были связаны с гистотипическим восстановлением дефектов кожного покрова с помощью тканевой инженерии. Были разработаны трехмерные клеточные конструкции, состоящие из внеклеточного матрикса и аутологичных или аллогенных клеток, названные "живыми эквивалентами дермы и кожи", которые использовали для трансплантации на ожоговые поверхности, длительно незаживающие раны и язвы разной природы. Успешно используются методы тканевой инженерии для лечения ожогов и язв роговицы.

Многие исследователи связывают большие перспективы для клинической практики с использованием эмбриональных стволовых клеток. Эмбриональные стволовые клетки можно стимулировать к дифференциации в разные типы клеток, в том числе и кератиноциты. Однако в настоящее время еще существуют сомнения в полной безопасности использования эмбриональных стволовых клеток для тканевой инженерии.

Соседние файлы в предмете Гистология