
- •Объект асутп
- •1. Классификационные признаки асутп сушильной установи:
- •2.2. Преимущества использования сетей
- •2.3. Архитектура сетей
- •Построение асутп на базе концепции открытых систем Особенности асутп
- •Работа сети
- •3.3. Взаимодействие уровней модели osi
- •3.4. Описание уровней модели osi
- •У р о в е н ь №2. Канальный уровень(Date link)
- •У р о в е н ь 3. Сетевой уровень (Network)
- •У р о в е н ь 4. Транспортный уровень (Transport)
- •У р о в е н ь 5. Сеансовый уровень (Session)
- •У р о в е н ь 6. Представительский уровень (Presentation)
- •У р о в е н ь 7. Прикладной уровень (Application)
- •Передача данных
- •Типы, разрядность и быстродействие шин пк
- •Сравнение кабелей
- •Работа протоколов
- •Стеки протоколов
- •Модель osi и уровни протоколов
- •Сетевые архитектуры
- •Адрес назначения и исходный адрес
- •Контрольная последовательность кадра
- •Характеристика топологии 10 Base 2
- •К современным локальным сетям Производительность
- •Надежность и безопасность
- •Расширяемость имасштабируемость
- •Прозрачность
- •Поддержка разных видов трафика
- •Управляемость
- •Совместимость
- •Функциональные задачи асутп Классы асу тп
- •Назначение алгоритмов контроля
- •Аналитическая градуировка и коррекция показаний датчиков
- •Фильтрация и сглаживание
- •. Интерполяция и экстраполяция
- •Статистическая обработка экспериментальных данных
- •. Методы определения функций корреляции
- •Контроль достоверности исходной информации
- •Проверка выполнения неравенств
- •Задачи характеризации
- •Архитектура асутп Задачи проектирования
- •Место программируемого контроллера в асу предприятия
- •Классификация плк
- •Мощный плк
- •Адекватность функционально-технологической структуре объекта
- •Линейки контроллеров от основных производителей
- •Специализированные модули контроллеров для асутп
- •Системы противоаварийной защиты
- •В асутп
- •Необходимость применения
- •Противоаварийной защиты
- •Назначение системы паз в асутп
- •Обеспечение системы паз
- •Обеспечение надежности в системе паз
Передача данных
Данные, размещенные в оперативной памяти компьютера, передаются сетевому адаптеру через системную шину; при этом применяется одна из следующих технологий: прямой доступ к памяти (DMA direct memory access), общая память или программируемый ввод/вывод.
Размещение данных в буфере.
Скорость, с которой компьютер обрабатывает информацию, отличается от скорости передачи данных по сети. Как следствие, плата сетевого адаптера содержит буферы памяти, которые используются для накопления и хранения данных с той целью, чтобы эти данные можно было обрабатывать порциями фиксированного объема. Обычная плата адаптера Ethernet имеет буфер размером 4 Кбайта, поделенный на части для передачи и приема, по 2 Кбайта каждая. Платы Token Ring и адаптеры Ethernet высокого класса могут обладать буфером размером 64 Кбайта и более, который может быть разбит на области приема и передачи произвольным образом.
Создание кадра
Сетевой адаптер получает данные, упакованные протоколом Сетевого уровня, и инкапсулирует их в кадр, который включает собственно заголовок Канального уровня и постинформацию. В зависимости от размера пакета и используемого протокола Канального yровня, адаптеру, возможно, также потребуется поделить данные на сегменты соответствующего размера для передачи их в сеть. Кадры Ethernet, например, переносят 1500 байт данных, в то время как кадры Token Ring могут содержать сегменты размером до 4500 байт. Для входящего трафика сетевой адаптер считывает информацию в кадры Канального уровня, проверяет их на наличие ошибок и определяет, должен ли пакет быть передан следующему уровню протокольного стека. Если да, то адаптер удаляет оболочку кадра Канального уровня и передает вложенные данные протоколу Сетевого уровня.
Управление доступом к среде.
Сетевой адаптер также несет ответственность за арбитраж доступа системы к общей среде передачи данных, чтообеспечивается соответствующим механизмом управления доступом к среде (MAC, media access control). Нам известно, что необходимо предотвращать передачу данных по сети несколькими системами одновременно, так как бесконтрольная передача может привести к потере данных в результате возникновения коллизии пакетов. Механизм управления доступом к среде — отдельный, наиболее подробно описываемый в руководствах, элемент протокола Канального уровня. Метод множественногодоступа с контролем несущей и обнаружением коллизий (CSMA/CD, CarrierSense Multiple Access with Collision Detection), применяемый в сетях Ethernet, радикально отличается от аппарата доступа с передачей маркера, поддерживаемого сетями Token Ring, но основные функции этих механизмов, вконечном счете, одни и те же. (Для входящего трафика нет необходимости в использовании механизма управления доступом к среде.)
Параллельное/последовательное преобразование.
Системная шина, соединяющая сетевой адаптер и массив основной памяти компьютера, осуществляет обмен данными в параллель — по 16 или 32 бита одновременно,в то время как адаптер передает и принимает данные из сети последовательно — по одному биту. Сетевой адаптер отвечает за размещение получаемых параллельно данных в своем буфере и преобразование этих данных в последовательный поток битов для последующей передачи черезсетевую среду. Для данных, получаемых из сети, описанный процесс носит обратный характер.
Кодирование/декодирование данных.
Компьютер работает с данными вдвоичной форме, поэтому, прежде чем они смогут быть переданы по сети, их необходимо закодировать способом, подходящим для сетевой среды передачи данных, а входящие сигналы должны быть, соответственно, декодированы при приеме
Прием/передача данных. На этом шаге сетевой адаптер усиливает сигналдоподходящей амплитуды и посылает закодированные им данные через сетевую среду. Это — чисто физический процесс, целиком и полностью зависящий от природы сигнала, используемого сетевой средой.
Платы сетевого адаптера используют различные шины компьютера