Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
BZhD_ekzamen.docx
Скачиваний:
83
Добавлен:
06.11.2017
Размер:
2.3 Mб
Скачать
  1. Принцип действия защитного заземления на примере сети до 1 кВ с изолированной нейтралью.

Защитное заземление применяется в 3-х фазных сетях до 1 кВ с изолированной нейтралью

(3 фазные линии подключены к электроустановке, электроустановка заземлена, от пола к линиям показано сопротивление изоляции, от первой линии ток направлен к полу у остальных из пола.)

Формула для нахождения тока проходящего через тело человека при случае когда корпус не заземлен: .

Формула расчета тока проходящего через тело человека при заземление корпуса: .

При RЗ<<Rh и RИЗ упростим формулу и получим:.

,.

. ., , .

В сетях с изолированной нейтралью заземление корпуса является весьма эффективным методом защиты от косвенного прикосновения.

  1. Замыкание фазы на землю в 3-х фазной четырёхпроводной сети до1 кВ с изолированной нейтралью.

( 3 фазные линии и нейтральный провод подключены к корпусам без заземления от 3ей фазы к земле изображено замыкание ).

Вывод: В 4х проводной сети с изолированной нейтралью при случайном замыкании фазы на землю между нулевым защитным проводом и землёй, а следовательно, между каждым зануленным корпусом и землей, возникает напряжение Uк, близкое к значению Uф. Например, при Uф=220В, Uк220В. Что является весьма опасным.

  1. Замыкание фазы на землю в 3-х фазной четырёхпроводной сети до 1 кВ с заземлённой нейтралью.

( 3 фазные линии и нейтральный провод подключены к корпусам с заземлением, от 3ей фазы к земле изображено замыкание )

В сети с заземленной нейтралью при случайном замыкании фазы на землю будет обеспечиваться безопасность, так как при замыкании фазы на землю фазное напряжение Uф разделится пропорционально сопротивлениям Rзм (сопротивления замыкания фазы на землю) и Rо (сопротивление заземления нейтрали), благодаря чему напряжение между зануленным оборудованием и землей Uк снизится и будет равно:

,

где: IЗ – ток замыкания на землю фазы

Как правило, сопротивление, которое оказывает грунт току замыкания фазы на землю Rзм, во много раз больше сопротивления заземления нейтрали R0. Поэтому Uк оказывается незначительным.

Например, при Uф=220В, R0 =4 Ом, Rзм=100 Ом

, .

При таком напряжении и токе прикосновение к корпусу неопасно.

  1. Замыкание фазы на корпус при обрыве нулевого защитного проводника в сети без повторного и с повторным заземлением нулевого защитного проводника.

Для уменьшения опасности поражения людей электрическим током в случаях обрыва нулевого защитного проводника и замыкания фазного проводника на корпус применяют повторное заземление нулевого защитного проводника.

При случайном обрыве нулевого защитного провода и замыкании фазы на корпус (за местом обрыва) отсутствие повторного заземления приведёт к тому, что напряжение относительно земли оборванного участка нулевого защитного провода и всех присоединенных к нему корпусов окажется равным фазному напряжению сети (Uф)

(2 рисунка 3 фазных провода плюс нейтральный, на нейтральном проводе навешаны 3 электроустанвки, после первой показан обрыв нейтрального провода, От 3ей фазы изображен замыкание на корпус, на 2ом рисунке отличие: после электроустановок нейтраль заземлена еще раз.)

Это напряжение опасное для человека будет существовать длительно, поскольку поврежденная электроустановка не будет отключаться от защиты, а обрыв нулевого проводника трудно обнаружить, чтобы отключить вручную.

Если же нулевой защитный проводник будет иметь повторное заземление, то при его обрыве сохранится цепь тока Iз через землю (рис. 4.9, б), а напряжение прикосновения на корпусе относительно земли за местом обрыва снизится до назначения:

,

где: IЗ – ток, проходящий через землю, RП – сопротивление повторного заземления нулевого защитного провода

Корпуса электрооборудования, присоединенные к нулевому защитному проводнику до места обрыва также окажутся под напряжением относительно земли:

Сумма Uк и U0 равны фазному напряжению: Uк + U0= Uф

Если Rо= Rn, то корпуса, присоединенные к нулевому защитному проводу, как до, так и после обрыва, будут иметь одинаковый потенциал: Uк = U0= 0,5Uф

Этот случай является наименее опасным, так как при других соотношениях R0 и Rn часть корпусов будет находиться под напряжением большим 0,5Uф, а другая часть корпусов под напряжением меньшим 0,5Uф.

Поэтому повторное заземление значительно уменьшает опасность поражения электрическим током, возникающую при обрыве нулевого защитного проводника, но не может обеспечить условий безопасности, которые существовали до обрыва.

  1. Схема, поясняющая недопустимость одновременного заземления и зануления разных корпусов электрооборудования в одной сети.

В сети, где применяется защитное зануление, запрещается заземлять корпус электроприемника, не присоединив его к нулевому защитному проводу.

Объясняется это тем, что в случае замыкания фазы на заземленный, но не присоединенный к нулевому защитному проводнику корпус электрооборудования (рис. 4.14), образуется цепь тока Iз через сопротивление заземления этого корпуса Rз и сопротивление нейтрали источника тока R0.

В результате между этим корпусом и землей возникает напряжение:

Uк = IзRз

Одновременно возникает напряжение между нулевым защитным проводником и землей (между всеми корпусами присоединенными к нулевому защитному проводнику и землей): U0= IзR0

При Rз= Rо, Uк и U0 будут одинаковыми и равными половине фазного напряжения.

Например, в сети с Uф=220В напряжение между каждым корпусом и землёй будет равно 110В.

Указанные напряжения могут существовать длительно, пока электроустановка не будет отключена от сети вручную, т.к. защита из‑за малого значения тока Iз может не сработать.

Следует отметить, что одновременное заземление и зануление одного и того же корпуса наоборот улучшает условия безопасности, т.к. создаёт дополнительное заземление нулевого проводника.

Зануление как и защитное заземление, необходимо выполнять в следующих случаях: в помещениях с повышенной опасностью и особо опасных в отношении поражения электрическим током, а также вне помещений при напряжении электроустановок выше 42 В переменного и 110 В постоянного тока;

в помещениях без повышенной опасности при напряжении электроустановок 380 В и выше переменного и 440 В и выше постоянного тока