
- •Курс лекций «Вычислительные машины, системы и сети»
- •Часть 1. Вычислительные машины. 3
- •Часть 2. Вычислительные системы. 203
- •Часть 3. Вычислительные сети. 254
- •Часть 1. Вычислительные машины.
- •Лекция 1. Структура вычислительной машины.
- •1.1 Общее устройство
- •1.2 Корпус pc
- •1.3 Материнская плата
- •1.4 Процессор
- •1.5 Устройства хранения данных
- •Лекция 2. Эволюция микрокомпьютеров.
- •1.1.Основные направления эволюции микрокомпьютеров.
- •Лекция 3. Машинная организация процессора 80286
- •1.1. Введение.
- •2.2. Структура памяти.
- •2.3. Сегментация памяти.
- •2.4. Структура ввода-вывода.
- •2.5. Регистры.
- •Лекция 4. Операнды и режимы адресации операндов.
- •Лекция 5. Общая организация памяти.
- •Лекция 6. Прерывание микропроцессора в эвм.
- •Организация обработки прерываний в эвм
- •Цепочечная однотактная система определения приоритета запроса прерывания
- •Обработка прерываний в персональной эвм
- •Лекция 7. Последовательный интерфейс rs–232c.
- •Общие сведения о интерфейсе rs–232c
- •Виды сигналов
- •Тестовое оборудование для интерфейса rs–232c
- •Лекция 8. Последовательный интерфейс сом-порт.
- •Использование сом-портов
- •Функции bios для сом-портов
- •Лекция 9. Программируемый связной интерфейс.
- •Лекция 10. Передача данных между эвм с помощью модемов. Типы и характеристики модемов.Набор ат-команд.
- •Лекция 11. Программируемый периферийный интерфейс.
- •Лекция 12. Параллельный интерфейс:lpt-порт.
- •Интерфейс Centronics
- •Сигналы интерфейса Centronics
- •Традиционный lpt-порт
- •Функции bios для lpt-порта
- •Расширения параллельного порта
- •Физический и электрический интерфейс
- •Режимы передачи данных
- •Полубайтный режим ввода — Nibble Mode
- •Конфигурирование lpt-портов
- •Использование параллельных портов
- •Неисправности и тестирование параллельных портов
- •Лекция 13. Программируемые таймеры и счетчики событий.
- •Лекция 14. Универсальная последовательная шина usb.
- •2.Шина usb.Общая характеристика.
- •Структура usb
- •3.Физический интерфейс
- •Протокол
- •Устройства usb - функции и хабы
- •Хост-контроллер
- •Лекция 15. Протокол работы usb-шины.
- •Описание протоколов используемых при передаче данных Структура usb пакета
- •Поля usb пакета
- •Типы usb пакетов
- •Приоритеты передач по usb-шине
- •Источники информации
- •Лекция 16. Интерфейс ieee-1394 (FireWire).
- •Технические характеристики
- •Топология шины
- •Пример топологии ieee-1394
- •Совместимость
- •Кабели и разъемы
- •Список литературы
- •Лекция 17. Организация прямого доступа к памяти.
- •Лекция 18. Устройства ввода эвм. Клавиатура. Введение
- •1. Основные части клавиатуры
- •1.1. Клавиши пишущей машинки (алфавитно-цифровая клавиатура)
- •Режимы ввода символов
- •Названия специальных знаков
- •1.2. Служебные клавиши
- •Индикаторы режимов
- •Клавиши управления курсором
- •1.3. Функциональные клавиши
- •1.4. Малая цифровая клавиатура
- •2. Принципы работы клавиатуры
- •Лекция 19. Интерфейс эвм с видеотерминалом. Видеоадаптер. Режимы изображений: текстовый и графический режимы. Видеопамять. Анимация изображений. Интерфейс эвм с видеотерминалом.
- •Видеоадаптер.
- •Лекция 20. Накопитель магнитных дисков: гибкий и жесткий. Структура дисков: дорожки, сектора, блоки. Обмен информации между эвм и магнитными дисками.
- •Лекция 21. Сканер. Считывание изображения. Типы обрабатываемых изображений. Качество изображения.
- •Лекция 22. Назначение и функции операционной системы.
- •Часть 2. Вычислительные системы.
- •Лекция 23. Классификация систем параллельной обработки данных.
- •Сеть с топологией кольцо
- •Литература
- •Лекция 24. Классификация мультипроцессорных систем по способу организации основной памяти.
- •Лекция 25. Обзор архитектур многопроцессорных вычислительных систем.
- •Лекция 26. Направление развития в высокопроизводительных вычислительных системах.
- •Универсальные системы с фиксированной структурой
- •Направления развития микропроцессоров
- •Системы с фиксированной структурой из серийных микропроцессоров
- •Специализированные системы с фиксированной структурой
- •Специализированные системы с программируемой структурой
- •Технологическая база развития современных архитектур
- •Архитектуры многопотоковых процессоров
- •Кластер Green Destiny
- •Программируемый микропроцессор
- •Однородные вычислительные среды
- •Литература
- •Однокристальный ассоциативный процессор сам2000
- •Литература
- •Однокристальный векторно-конвейерный процессор sx-6
- •Литература
- •Лекция 27. Принципы построения телекоммуникационных вычислительных систем.
- •2.Компоненты телекоммуникационной системы
- •3. Типы телекоммуникационных сетей.
- •4. Топологии вычислительной сети.
- •5. Модем
- •Часть 3. Вычислительные сети.
- •Лекция 28. Эталонная модель взаимодействия открытых систем.
- •Лекция 29. Локальные вычислительные сети.
- •10Base-2 или тонкий Ethenet
- •10Base-5 или толстый Ethenet
- •2.2.2. Компоненты сети
- •2.2.3. Проводная сеть в умном доме(LexCom Home)
- •Лекция 30. Беспроводные сети на основе службы gprs.
- •Чем привлекательна эта технология?
- •Передача данных: gprs и gsm
- •Что дает абоненту технология gprs?
- •Принципы построения системы gprs
- •Терминальное оборудование gprs
- •Скорости передачи в системе gprs
- •Перспективы развития услуг на базе gprs
- •Перспективы пакетной передачи данных
- •Gprs модемы существуют в нескольких исполнениях:
- •Лекция 31. Беспроводные сети Radio-Ethernet.
- •Заключение
- •Лекция 32. Беспроводные локальные сети на основе Wi-Fi - технологии. Введение.
- •Архитектура, компоненты сети и стандарты
- •Организация сети
- •Физический уровень ieee 802.11
- •Канальный уровень ieee 802.11
- •Типы и разновидности соединений
- •2. Инфраструктурное соединение.
- •4. Клиентская точка.
- •5. Соединение мост.
- •Список использованной литературы:
10Base-2 или тонкий Ethenet
Основная используемая топология |
общая шина |
Используемый провод |
коаксиальный кабель 50 Ом, тонкий |
Максимальная длина сегмента |
185 метров |
Минимальное расстояние между точками подключения |
0,5 метра |
Максимальное количество точек подключения к сегменту |
30 |
Максимальное количество сегментов в сети |
5 |
|
|
|
1 - сетевая карта, установленная в компьютере 2 - Т-коннектор 3 - разъемы на концах кабеля 4 - терминатор |
|
|
10Base-5 или толстый Ethenet
Используемая топология |
Общая шина |
Используемый провод |
Коаксиальный кабель толстый (так называемый "желтый") с волновым сопротивлением 50 Ом. |
Максимальная длина сегмента (отрезок сети без повторителя, ограниченный терминаторами) |
500метров (1640 футов) |
Минимальное расстояние между точками подключения |
2,5 метра (8,2 фута) |
Максимальное количество точек подключения к сегменту |
100 |
Максимальное количество сегментов сети |
5 |
Устройства подключаются к сети посредством устанавливаемого на кабель трансивера (transceiver - MAU(Media Access Unit)). |
|
Максимальная длина трансиверного кабеля (длина кабеля между трансивером и устройством) |
25 метров |
-Звезда
рис.
3
Для построения сети с звездообразной архитектурой в центре сети необходимо разместить концентратор(hub) или коммутатор(switch). Его основная функция - обеспечение связи между компьютерами, входящими в сеть. То есть все компьютеры, включая файл-сервер, не связываются непосредственно друг с другом, а присоединяются к концентратору. Такая структура надежнее, поскольку в случае выхода из строя одной из рабочих станций все остальные сохраняют работоспособность. В сетях же с шинной топологией в случае повреждения кабеля хотя бы в одном месте происходит разрыв единственного физического канала, необходимого для движения сигнала. Кроме того, сети с звездообразной топологией поддерживают технологии Fast Ethernet и Gigabit Ethernet, что позволяет увеличить пропускную способность сети в десятки и даже сотни раз (разумеется при использовании соответствующих сетевых адаптеров и кабелей). 100 и 1000 Мбитные сети строятся по топологии "Звезда".
2.2.2. Компоненты сети
-Концентратор и коммутатор
Концентратор и коммутатор относятся к разным типам активного сетевого оборудования, которое используется для соединения устройств сети. Они отличаются способом передачи в сеть тех данных (трафика), которые к ним поступают. Термин концентратор иногда используется для обозначения любого сетевого устройства, которое служит для объединения всех ПК сети, но на самом деле концентратор - это многопортовый повторитель. Устройства этого типа просто передают (повторяют) всю информацию, которую они получают. То есть все устройства, подключенные к портам концентратора, получают одну и ту же информацию.
Концентраторы используются для расширения сети. Однако чрезмерное увлечение концентраторами может привести к большому количеству ненужного трафика, который поступает на сетевые устройства. Ведь концентраторы передают трафик в сеть, не определяя реальный пункт назначения данных. ПК, которые получают пакеты данных, используют адреса назначения, имеющиеся в каждом пакете, для определения, им предназначен пакет или нет. В небольших сетях это не является проблемой, но даже в сетях среднего размера с интенсивным трафиком следует использовать коммутаторы, которые минимизируют количество необязательного трафика.
Коммутаторы контролируют и управляют сетевым трафиком, анализируя адреса назначения каждого пакета. Коммутатор знает, какие устройства соединены с его портами, и направляет пакеты только на необходимые порты. Это дает возможность одновременно работать с несколькими портами, расширяя тем самым полосу пропускания.
Таким образом, коммутация уменьшает количество лишнего трафика, который возникает, когда одна и та же информация передается всем портам. Коммутаторы и концентраторы часто используются в одной и той же сети; концентраторы расширяют сеть, увеличивая число портов, а коммутаторы разбивают сеть на небольшие менее перегруженные сегменты.
В небольшой сети (до 20 рабочих мест) концентратор или группа концентраторов вполне могут справиться с сетевым трафиком. В этом случае концентратор просто служит для соединения всех пользователей сети. В сети большего размера (более 25 пользователей) может появиться необходимость использовать коммутаторы для разделения сети на сегменты, чтобы уменьшить количество необязательного трафика.
Если Вы используете концентратор или коммутатор с индикаторами, показывающими степень загруженности сети, то, анализируя их показания, можно сделать определенные выводы. Так в том случае, если трафик постоянно велик, следует использовать коммутатор для разделения сети на сегменты.
передняя
панель
задняя
панель
рис.
4
-Кабели
Витая пара
Кабель
"Twisted Pair" - "Витая паpа", состоит
из "паp" проводов, закрученных
вокруг друг друга и одновременно
закрученных вокруг других паp, в пределах
одной оболочки. Каждая паpа состоит из
провода, именуемого "Ring" и провода
"Tip". ( Названия произошли из
телефонии). Каждая паpа в оболочке имеет
свой номер, таким образом, каждый провод
можно идентифицировать как Ring1, Tip1,
Ring2,Tip2,... .
Дополнительно к нумерации проводов каждая паpа имеет свою уникальную цветовую схему. Кабель делится на категории: 3 категория - используется для передачи данных со скорость до 10Мбит в секунду (Mbps) включительно. Применяется в сетях 10Base-T. 5 категория - используется для передачи данных со скорость до 100 Мбит в секунду (Mbps) включительно. Применяется в сетях 100Base-TX и других, требующих такую скорость.
Рис. 5
Коаксиальный кабель
Коаксиальный кабель (от латинского co - совместно и axis - ось), представляет собой два соосных гибких металлических цилиндра, разделенных диэлектриком. Скорость передачи информации от 1 до 10 Мбит/с
1- центральный провод (жила) 2- изолятор центрального провода 3- экранирующий проводник (экран) 4- внешний изолятор и защитная оболочка |
|
рис. 6
-Адаптеры
[2]Вне зависимости от используемого кабеля для каждой рабочей станции необходимо иметь сетевой адаптер. Сетевой адаптер – это плата, которая вставляется в материнскую плату компьютера. Она имеет два разъема для подключения к сетевому кабелю.
Некоторые ПК поставляются с заранее установленным сетевым адаптером. При выборе сетевого адаптера для ПК необходимо учитывать:
скорость концентратором, коммутатора или принт-сервера, к которому ПК подключается: 10 Мбит/с (Ethernet) и 100 Мбит/с Fast Ethernet.
Тип соединения: RJ-45 - для витой пары, BNC - для коаксиального кабеля.
Тип слота ПК, предназначенный для установки сетевого адаптера: ISA или PCI.
-Серверы
Для обеспечения функционирования локальной сети часто выделяется специальный компьютер – сервер, или несколько таких компьютеров. На дисках серверов располагаются совместно используемые программы, базы данных и т.д. Остальные компьютеры локальной сети часто называются рабочими станциями. На тех рабочих станциях, где требуется обрабатывать только данные на сервере, часто для экономии, не устанавливают жестких дисков. В сетях, состоящих более чем из 20-25 компьютеров, наличие сервера обязательно – иначе, как правило, производительность сети будет неудовлетворительной. Сервер необходим и при совместной интенсивной работе с какой –либо базой данных.
Используя вышесказанное можно организовать проводную сеть в умном доме