- •Н. А. Агаджанян, л. 3. Тель, в. И. Циркин, с. А. Чеснокова физиология человека
- •Предисловие ко второму изданию
- •Список использованных сокращений
- •Транспорт веществ. Электрогенез. Возбудимые ткани
- •Транспорт вещества через биологические мембраны
- •Возбудимые ткани и их общие свойства
- •Свойства возбудимых тканей и показатели, их характеризующие: Свойства
- •Мембранный потенциал и его происхождение
- •Потенциал действия
- •Законы раздражения возбудимых тканей
- •Глава 2 физиология мышц
- •Суммированные сокращения
- •Глава 3
- •Свойства химических синапсов
- •Глава 4
- •Глава 5
- •(Центральной нервной системы)
- •Глава б роль цнс в регуляции соматических функций
- •Глава 7
- •Симпатическая система
- •Глава 8 сенсорные системы мозга
- •Обонятельный анализатор
- •Глава 9
- •Условные рефлексы второго, третьего и т. Д. Порядков
- •Бодрствование, сознание, сон
- •Глава 10 общая физиология желез внутренней секреции (общая эндокринология)
- •1. Механизм действия стероидных гормонов.
- •2. Механизм действия тиреоидных гормонов.
- •3. Механизм действия белковых гормонов, катехоламниов, серотонина, гистамина.
- •Глава 11 частная физиология желез внутренней секреции и биологически активных веществ (частная эндокринология)
- •Адг (вазопрессин). Окситоцин
- •Гормоны надпочечников. Катехоламины
- •Глава 12
- •5) Приводят к изменению слизистой матки — вызывают процесс пролиферации эндометрия.
- •Глава 13
- •Физиология эритроцита
- •4) Клетки, тормозящие начало и осуществляющие прерывание, окончание иммунной реакции организма, их называют супрессоры;
- •Глава 14
- •Сосудисто-тромбоцитарный гемостаз
- •Глава 15 физиология сердца. Гемодинамика
- •1. Систола желудочков — 0,33 с
- •2. Диастола желудочков — 0,47 с
- •Сократимость миокарда
- •Глава 16
- •Электрокардиография
- •О природе экг
- •Глава 17
- •Общие замечания
- •2. Гетерометрический и гомеометрические механизмы саморегуляции деятельности сердца.
- •Глава 18
- •Глава 19 физиология дыхания
- •Глава 20 регуляция дыхания. Газообмен и транспорт газов
- •Глава 21 биоэнергетика. Основной и общий обмен
- •Глава 22
- •Сократительный термогенез
- •Глава 23
- •Сущность процессов, происходящих
- •Глава 24 моторика и секреция в пищеварительном тракте
- •Глава 25 пищеварение в различных отделах пищеварительного тракта
- •Кишечный сок
- •Образование и состав желчи
- •4. Оценка гидролиза и всасывания
- •Глава 26
- •4. Вещества, проявляющие антиканцерогенные эффекты:
- •1) Рацион питания студентов, в г/сутки (см. Таблицу 18).
- •2) Особенности пищевых рационов для работников умственного труда.
- •Глава 27 выделение. Физиология почки
- •Нефроны
- •Регуляция кислотно-щелочного равновесия
- •Глава 28
- •Факторы, связанные с трудовой деятельностью человека
- •Глава 29
- •Особенности адаптации человека
- •Глава 30
- •Глава 31
- •Глава 32
- •Глава 33 экология и продолжительность жизни
- •Глава 34 возрастная физиология*
- •Глава 35 физиология старения* старение как биологический процесс. Теории старения
- •Глава 1.........................................................................................………………………………………………5
- •Глава 2...............................................................................................................................................……………18
- •Глава 3
- •Глава 4.....................................................................................................…………………………………….34
- •Глава 5
- •Глава 6…………………………………............................................................................................................. 50
- •Глава 7.......................................................................................................................……………....................... 62
- •Глава 8. ..............................................................................................................................……………............... 76
- •Глава 9.............................................................……………………………….................................................... 103
- •Глава 10............................................................................................................................................................... 123
- •Глава 11...........................................................................................................................................………….... 131
- •Глава 12..........................................................................................................................………………………. 161
- •Глава 13 ……………………………………………………………………………………………………..….173
- •Глава 14………………………………………………………………………………………………………194
- •Глава 15...........................................................................................................................................………….... 204
- •Глава 16.......................................................................................................................................…………….. 224
- •Глава 17…………………………...................................................................................................................... 244
- •Глава 18......................................................................................................................................……………..... 259
- •Глава 19.......................................................................…………….................................................................... 271
- •Глава 20 ..............................................................................……………………………………….................... 279
- •Глава 21.......……………………………............................................................................................................294
- •Глава 22 ....................................................………………………..................................................................... 302
- •Глава 23....................................................................................................…………………………………....... 317
- •Глава 24 ..............................……………............................................................................................................ 329
- •Глава 25.....................................................................................................................................……………….. 340
- •Глава 26...............................................................................................................................………………........ 354
- •Глава 27..........................................................................................................................................……………. 370
- •Глава 28…………............................................................................................................................................... 388
- •Глава 29........................................................................................................................................……………... 396
- •Глава 30..........................................................................................................................................……………. 407
- •Глава 31..........................................................................................................................................…………..... 418
- •Глава 32................................................................ ……………..........................................................................438
- •Глава 33 ................…………………………………………………………………………………………….. 450
- •Глава 34.......................................... .....................………………………………………………........................458
- •Глава 35................……………...........................................................................................................................500
Регуляция кислотно-щелочного равновесия
Почки участвуют наряду с легкими в регуляции КЩР (кислотно-щелочного равновесия). Прежде всего, это осуществляется за счет регуляции процесса реабсорбции бикарбоната натрия, составной части бикарбонатного буфера. Если бы бикарбонат не реабсорбировался, то организм терял бы ценнейший компонент буферной системы крови. Когда рН крови сдвигается в кислотную сторону, эффективность реабсорбции бикарбоната натрия возрастает, а когда имеет место алкалоз — эффективность реабсорбции бикарбоната натрия уменьшается. Этот процесс регулируется величиной парциального напряжения в крови углекислого газа.
Реабсорбция бикарбоната натрия осуществляется следующим образом. В просвете канальца содержится бикарбонат натрия. Из эпителиальной клетки канальца секретируется в просвет канальца ион водорода, который вытесняет ион натрия из бикарбоната, превращая его в угольную кислоту. Эта кислота под влиянием карбоангидразы, которая локализована на апикальной части эпителиальной клетки, разлагается на углекислый газ и воду. Углекислый газ входит внутрь клетки, где под влиянием содержащейся внутри клетки карбоангидразы из него (а также из образующегося в результате метаболизма клетки СО2) и воды образуется угольная кислота. Она диссоциирует на ион водорода и анион НСО3. Ион водорода выходит из клетки в просвет канальца и вновь вытесняет натрий из бикарбоната, а натрий входит в клетку.
Итак, секреция водорода в обмен на натрий приводит в конечном итоге к тому, что весь бикарбонат переходит из первичной мочи в кровь, а избыток ионов водорода выходит в мочу. Когда в организме накапливаются ионы водорода, то моча приобретает кислую среду (например, при мясной пище), а когда в организме накапливаются щелочные продукты (например, овощная диета), то моча становится щелочной.
385
Секретируемые в просвет канальца ионы водорода могут также связываться с фосфатами (Na2HО4) и вытеснять из них натрий, превращаясь в NaH2PО4, который покидает почки и выносит избыток ионов водорода.
В почках происходит образование аммиака в результате дезаминирования аминокислсот (глутаминовой). Входящий в просвет канальца аммиак соединяется с ионами водорода, образуя аммоний. Это соединение неспособно реабсорбироваться назад, в кровь, поэтому в таком виде водородные ионы покидают организм.
Итак, почка способна секретировать избыток ионов водорода. Эта секреция сопряжена с реабсорбцией натрия (вместе с бикарбонатом), а также с детоксикацией аммиака.
В целом, нелетучие кислоты могут покидать организм через почку при наличии избыточного накопления этих кислот в организме. Тем самым почка вместе с буферными системами крови и легкими участвует в поддержании кислотно-щелочного равновесия.
МОЧЕВОЙ ПУЗЫРЬ И МОЧЕИСПУСКАНИЕ
Выделяют фазу накопления мочи. Она продолжается от 2—3 часов до 5 часов и более. Поэтому в норме за сутки осуществляется 4—6 опорожнений. Непременным условием накопления мочи в мочевом пузыре является закрытый просвет внутреннего отверстия мочеиспускательного канала. Это определяется функцией замыкательного аппарата треугольника и шейки мочевого пузыря, а также сокращением поперечно-полосатого сфинктера уретры. Мышцы тазового дна и мочеполовой диафрагмы способствуют накоплению мочи в пузыре. Благодаря им поддерживается определенное (неподвижное) положение мочевого пузыря и сохранение пузырно-ректального угла. Если тонус мочеполовой диафрагмы снижается, то это может приводить к недержанию мочи при кашле, смехе, натуживании, физической нагрузке (это бывает нередко у женщин).
Сразу после опорожнения мочевой пузырь абсолютно пуст, т. е. остаточной мочи нет. В момент наполнения пузыря при вдохе внутрипузырное давление возрастает, а при выдохе — снижается. Поступление мочи из мочеточника происходит в момент выдоха, т. е. при снижении давления внутри пузыря. Каждая порция вошедшей мочи (как электролит) порождает волну сокращения, благодаря которой закрывается шейка уретры, закрываются устья мочеточника, следовательно, эта волна способствует удержанию мочи в пузыре. По мере наполнения мочевого пузыря амплитуда дыхательных колебаний давления в просвете мочевого пузыря прогрессивно уменьшается. Это обусловлено тем, что по мере наполнения пузыря детрузор снижает свой тонус и возбудимость. При медленном поступлении мочи происходит адаптация детрузора к нагрузке, его возбудимость снижается, а тонус падает. Если же наполнение пузыря идет очень быстро, адаптация не успевает произойти. Это вызывает рефлекторное повышение внутрипузырного давления, позыв к мочеиспусканию.
В норме в фазу наполнения детрузор обеспечивает стабильное, невысокое (до 15 см водного столба) давление внутри пузыря, а замыкательный аппарат пузыря и уретральный сфинктер при этом сохраняют высокое давление (60 мм водного столба), что препятствует поступлению мочи в уретру.
По мере заполнения пузыря происходит рост внутрипузырного давления. И когда это давление достигает достаточно больших значений, возникает рефлекс торможения мочеобразования: снижается почечный кровоток и уменьшается объем фильтрации.
Следует подчеркнуть, что подобный рефлекс, обусловленный влиянием на тонус приносящих артериол, возникает при перенаполнении мочой любого участка — лоханки, мочеточника, мочевого пузыря.
Удержание мочи в мочевом пузыре обеспечивается за счет функционирования шейки мочевого пузыря и внутреннего отверстия уретры. Хотя в этой зоне нет циркулярных гладких мышц, т. е. типичных сфинктеров, но запирание существует — оно обусловлено наличием кавернозного механизма — язычка мочевого пузыря.
386
Иннервация детрузора осуществляется за счет холинергических волокон, которые активируют детрузор и вызывают опорожнение мочевого пузыря, а также симпатическими волокнами. Бета-адренорецепторы преимущественно локализованы в теле и дне пузыря. Альфа-адренорецепторы находятся в области шейки. Таким образом, за счет симпатических влияний происходит запирание мочевого пузыря (альфа-эффект) и расслабление детрузора (бета-эффект).
Акт мочеиспускания (опорожнение). При достижении нормальной емкости пузыря — 150—250 мл, усиливается поток импульсов от барорецепторов и механорецепторов в спинальные центры мочеиспускания (L2, L3, С2 – С4), а также в вышерасположениые отделы ЦНС — к центру мочеиспускания в гипоталамусе и к коре больших полушарий. По мере накопления мочи частота генерации потенциалов действия возрастает, и возникает позыв к мочеиспусканию и мочеиспускательный рефлекс. В физиологических условиях рефлекс может быть произвольно вызван или подавлен. Акт мочеиспускания идет благодаря сокращению детрузора. Когда мочеиспускание начинается, давление в мочевом пузыре снижается, и поток импульсов в ЦНС уменьшается, но опорожнение продолжается, так как, идя по уретре, моча (как электролит) возбуждает имеющиеся здесь рецепторы, которые поддерживают сокращение детрузора.
Итак, чтобы произошел акт мочеиспускания, необходимо сокращение мышц детрузора, расслабление мышц промежности и тазового дна, открытие уретрального сфинктера, а в конце мочеиспускания — сокращение мышц промежности и тазовых мышц. Выделяют круги, или петли, регуляции мочевого пузыря.
1) Первый функциональный круг соединяет двигательные центры мускулатуры мочевого пузыря, находящиеся в лобных долях больших полушарий, с ретикулярной формацией. Этот круг связывает между собой таламус, базальные ядра и лимбическую систему. Каков физиологический смысл этого круга? Когда в результате потока импульсов от баро- и механорецепторов пузыря возникает рефлекторное повышение тонуса детрузора, то от базальных ядер и от лимбической системы к спинальным центрам поступают тормозные влияния. Но через кору больших полушарий осуществляется произвольная регуляция акта мочеиспускания. Этот круг созревает в онтогенезе в первые годы, а в старости — разрушается.
2) Второй функциональный круг — это пути от рецепторов мочевого пузыря до центров мочеиспускания в ретикулярной формации. От них начинаются ретикулоспинальные пути, играющие определенную роль в активации соматической мускулатуры, принимающей участие в акте мочеиспускания. В целом, задача этого круга — создание координированного рефлекса мочеиспускания достаточной продолжительности до полного опорожнения мочевого пузыря.
3) Третий круг — начинается от рецепторов детрузора, поток импульсов от которых достигает мотонейронов крестцового отдела спинного мозга. За счет этого пути тормозятся мотонейроиы, иннервирующие периуретральную мускулатуру, поэтому происходит ее расслабление, что способствует мочеиспусканию.
4) Четвертый круг — благодаря ему осуществляется сегментарная иннервация поперечно-полосатой периуретральной мускулатуры. Супраспинальный путь идет от рецепторов растяжения мышц тазового дна к таламусу, а затем к коре, откуда по пирамидному пути сигналы идут к мышцам тазового дна. Когда этот путь нарушается, то возникает спазм поперечно-полосатого сфинктера уретры. Сегментарный путь представляет собой поток импульсов от рецепторов растяжения тазовых мышц к мотонейронам спинного мозга, а от них — к тазовым мышцам. Когда этот путь нарушен, то возникает стойкое расслабление попе-речнополосатого сфинктера.
5) Пятый круг — обеспечивает передачу потока импульсов от рецепторов уретры к спинномозговым центрам мочеиспускания, благодаря этому опорожнение заканчивается лишь при полном высвобождении мочевого пузыря.
387
