
- •Федеральное государственное бюджетное образовательное учреждение
- •Введение
- •1. Физиология возбудимых тканей
- •1.2. Потенциал покоя и потенциал действия
- •1.2.1. Потенциал покоя. Микроэлектродная техника (внутриклеточная регистрация биопотенциалов).
- •1.2.2. Потенциал действия.
- •1.3. Биологические мембраны и ионные каналы
- •1.4. Механизмы потенциала покоя и потенциала действия
- •1.4.1. Потенциал покоя.
- •1.5. Распространение потенциала действия
- •1.6. Законы проведения возбуждения в нервах
- •1.6.3. Закон изолированного проведения возбуждения в нервных стволах.
- •1.7. Законы раздражения возбудимых тканей
- •1.7.1. Закон силы.
- •1.7.2. Зависимость пороговой силы стимула от его длительности (закон времени).
- •1.7.3. Зависимость порога от крутизны нарастания раздражителя (закон градиента).
- •1.7.4. Закон “ все или ничего”.
- •1.7.5. Полярный закон раздражения (закон Пфлюгера).
- •1.7.6. Лабильность (функциональная подвижность). Парабиоз.
- •1.8.1. Химические синапсы.
- •1.8.2. Электрическая передача.
- •1.8.2.1. Электрические синапсы.
- •1.8.2.2. Эфаптическая передача.
- •1.9. Возникновение пд в афферентных нейронах. Рецепторный и генераторный потенциалы
- •У первичночувствующих рецепторов рецепторный потенциал является одновременно и генераторным, т.К. Вызывает генерацию пд в наиболее чувствительных участках мембраны.
- •1.10. Возникновение пд в эфферентных нейронах. Механизмы суммации псп
- •1.11. Скелетные мышцы
- •1.12. Сердечная мышца
- •1.13. Гладкие мышцы
- •1.14. Гландулоциты
- •2. Физиология центральной нервной системы
- •2.1. Нервная ткань
- •2.1.1. Нейроглия.
- •2.1.2. Гематоэнцефалический барьер.
- •2.1.3. Нейроны.
- •2.2. Нервная регуляция
- •2.2.1. Рефлекторный принцип регуляции.
- •2.2.3. Торможение.
- •2.4. Ствол мозга
- •2.4.1. Продолговатый мозг.
- •2.4.2. Мост.
- •2.4.3. Средний мозг.
- •2.4.4. Рефлексы Магнуса.
- •2.4.5. Ретикулярная формация.
- •2.4.6. Мозжечок.
- •2.4.7. Промежуточный мозг.
- •2.4.7.1. Таламус (зрительный бугор).
- •2.4.7.2. Гипоталамус.
- •2.5. Лимбическая система (висцеральный мозг)
- •2.6. Базальные ядра коры больших полушарий
- •2.7. Кора большого мозга
- •Кбм делится на древнюю, старую и новую:
- •2.7.1. Электрические проявления активности головного мозга.
- •2.8. Иерархия нейронных механизмов регуляции мышечной активности
- •2.9.Автономная (вегетативная) нервная система
- •Отличия соматической нервной системы от вегетативной
- •2.9.1. Метасимпатическая часть анс.
- •2.9.2. Парасимпатический отдел анс.
- •2.9.3. Симпатический отдел анс.
- •2.9.4. Трансдукторы.
- •2.9.5. Автономные (вегетативные) рефлексы.
- •2.9.6. Тонус анс.
- •3. Физиология сенсорных систем
- •3.1. Общая сенсорная физиология; 3.2. Зрение; 3.3. Слух; 3.4. Вестибулярная система; 3.5. Обоняние; 3.6. Вкус; 3.7. Соматосенсорная чувствительность; 3.8. Висцеральная чувствительность.
- •3.1. Общая сенсорная физиология
- •3.2. Зрение
- •3.3 Слух
- •3.4. Вестибулярная сенсорная система
- •3.5 Обоняние
- •3.6. Вкус
- •3.7. Соматосенсорная система
- •3.8. Висцеральная (интерорецептивная) система
- •4. Физиология высшей нервной деятельности
- •4.1. Высшая нервная деятельность и рефлекторная теория
- •1. По характеру безусловного рефлекса:
- •3. По времени отставления подкрепления:
- •4. Искусственные и натуральные:
- •5. Рефлексы высших и низших порядков:
- •4.2. Роль потребностей и мотиваций в формировании целенаправленной деятельности
- •Любое поведение всегда исходит из определенных мотивов и направлено на достижение определенных целей. Мотив – это то, что побуждает к деятельности – форма субъективного отражения потребности.
- •4.4. Развитие и особенности психической деятельности человека
- •4.5. Эмоции
- •4.6. Память
- •3 Стадия – формирование энграммы долговременной памяти.
- •4.7. Сознание, сон, гипноз, измененные формы сознания
- •5. Гуморальная регуляция
- •5.1. Общие вопросы гуморальной регуляции в организме
- •5.2. Гормоны желез внутренней секреции Гипофиз.
- •Гормоны аденогипофиза:
- •Гормоны нейрогипофиза.
- •Надпочечники.
- •Щитовидная железа
- •Околощитовидные железы
- •Поджелудочная железа
- •Половые железы
- •Женские половые гормоны.
- •6. Физиология крови
- •6.1. Функции и физико-химические свойства крови
- •Структура и функции плазмы крови.
- •Неэлектролиты: глюкоза, мочевина.
- •Белки плазмы - 7-8 % от массы плазмы. Альбумины – мол. М. 70000 (4-5 %). Глобулины – мол.М. До 450000 (до 3%). Фибриноген – мол.М. 340000 (0,2 – 0,4 %).
- •Альбумины 59,2 %
- •Значение белков плазмы.
- •6.2. Эритроциты
- •6.3. Лейкоциты
- •Моноциты:
- •6.4. Иммунитет
- •Лизоцим.
- •6.6. Группы крови
- •6.7. Тромбоциты
- •6.8. Гемостаз и фибринолиз
- •Сосудисто-тромбоцитарный гемостаз сводится к образованию тромбоцитарной пробки, или тромбоцитарного тромба.
- •Фибринолиз.
- •Фибринолитическая активность крови определяется соотношением активаторов и ингибиторов фибринолиза.
- •Естественные антикоагулянты.
- •7. Физиология кровообращения
- •7.1. Роль сердца в кровообращении, сердечный цикл
- •7.2. Основные законы гемодинамики
- •7.3. Функциональные особенности сосудов
- •7.4. Методы исследования сердечной деятельности
- •7.5. Методы исследования сердечнососудистой системы
- •7.6. Механизмы регуляции деятельности сердца
- •7.7. Регуляция тонуса сосудов
- •7.8. Регионарное кровообращение
- •7.9. Лимфообращение
- •8. Дыхание
- •8.1. Дыхание, его основные этапы
- •8.2. Механизм внешнего дыхания и газообмен в лёгких
- •8.3. Транспорт газов кровью
- •8.4. Регуляция дыхания
- •8.5. Особенности дыхания в условиях повышенного и пониженного барометрического давления
- •8.6. Первый вдох ребёнка, причины его возникновения. Возрастные изменения дыхания
- •9. Пищеварение
- •9.1. Концепции пищеварения и питания
- •9.2. Пищеварение в ротовой полости
- •9.3. Пищеварение в желудке
- •9.4. Пищеварение в кишечнике
- •10. Выделение
- •10.1. Выделение, функции почек и методы их изучения
- •Почки удаляют избыток воды, неорганических и органических веществ, конечные продукты обмена и природные вещества, выполняют ряд гомеостатических функций.
- •10.2. Нефрон и его кровоснабжение
- •10.3. Мочеобразование
- •10.4. Мочеиспускание
8.2. Механизм внешнего дыхания и газообмен в лёгких
У мелких животных дыхательный цикл состоит из вдоха и выдоха, у крупных – включает три фазы: вдох, выдох и паузу. У человека длительность спокойного выдоха на 10-20 % больше длительности вдоха. В условиях полного покоя дыхательная пауза имеет максимальную длительность, при физических или эмоциональных нагрузках – резко сокращается.
Вентиляция лёгких осуществляется за счет создания разности давления между альвеолярным и атмосферным воздухом.
При вдохе давление в альвеолярном пространстве значительно снижается (за счет расширения грудной полости) и становится меньше атмосферного (на 3-5 мм рт. ст.), поэтому воздух из атмосферы входит в воздухоносные пути.
При выдохе давление в альвеолярном пространстве приближается к атмосферному давлению или даже становится выше его (форсированный выдох). Это приводит к удалению очередной порции воздуха из легких.
Внутриплевральное давление меньше атмосферного: на вдохе на 4-9 мм рт.ст., на выдохе на 2-4 мм рт.ст..
При спокойном вдохе и выдохе через легкие проходит около 500 мл воздуха – дыхательный объём (ДО). Из них часть заполняет анатомическое мертвое пространство (около 175 мл). До основной среды доходит около 325 мл воздуха.
В среднем акт дыхания совершается за 4-10 с. Акт вдоха проходит несколько быстрее, чем акт выдоха. За минуту совершается 6-16 дыхательных циклов. Через легкое за минуту проходит около 3-8 л воздуха – это минутный объем дыхания (МОД) или легочная вентиляция.
При форсированном (глубоком) вдохе человек может, после ДО, дополнительно вдохнуть до 2500 мл. Это резервный объем вдоха (РОВд).
Резервный объем выдоха (РОВ) – количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха.
Остаточный объем лёгких (ООЛ) – количество воздуха, оставшееся в легких после максимального выдоха. Даже при самом глубоком выдохе в альвеолах и воздухоносных путях остается некоторое количество воздуха.
Ёмкости легких:
Общая емкость легких (ОЕЛ) – количество воздуха, находящегося в легких после максимального вдоха. Равна сумме – остаточный объем + жизненная емкость легких.
Жизненная емкость легких (ЖЕЛ) – наибольшее количество воздуха, которое можно выдохнуть после максимального вдоха. ЖЕЛ = дыхательный объем + резервный объем вдоха + резервный объем выдоха. У мужчин ростом 180 см ЖЕЛ ~ 4,5 л. У пловцов и гребцов до 8,0 л.
Резерв вдоха – максимальное количество воздуха, которое можно вдохнуть после спокойного выдоха. Равен сумме – дыхательный объем + резервный объем вдоха.
Функциональная остаточная емкость (ФОЕ) – количество воздуха, остающееся в легких после спокойного выдоха. Равен сумме – резервный объем выдоха + остаточный объем. У молодых – 2,4 л и около 3,4 у пожилых.
Ключевыми показателями являются – ДО, ЖЕЛ, ФОЕ. У женщин эти показатели, как правило, на 25 % ниже, чем у мужчин.
При спокойном дыхании ФОЕ обновляется примерно на 1/7 часть. За счет этого процентное содержание кислорода и углекислого газа (парциальное давление этих газов) сохраняется на постоянном уровне. Задача всех регуляторных механизмов дыхания - поддерживать постоянство парциального давления кислорода и углекислого газа в альвеолярном пространстве.
Дыхательная мускулатура.
Акт вдоха (инспирация) – процесс активный. Расширение грудной полости совершается дыхательными мышцами. Главная мышца – диафрагма. При её сокращении уплощается купол диафрагмы, что приводит к увеличению верхне-нижнего размера грудной полости. 70-100% вентиляции легких обеспечивается работой диафрагмальных мышц. При спокойном вдохе участвуют т, акже межхрящевые участки межреберных мышц краниальных межреберий, а также наружные межреберные мышцы. При их сокращении поднимаются ребра, отходит грудина. Размеры грудной полости увеличиваются в переднезаднем и поперечном направлениях. При форсированном вдохе дополнительно включаются лестничная, грудино-ключично-сосцевидная, трапециевидная, большая и малая грудные мышцы, мышцы-разгибатели позвоночника.
Акт выдоха (экспирация) в условиях покоя – процесс пассивный. Он происходит на фоне расслабления инспираторной мускулатуры за счёт эластической отдачи энергии, которая накопилась во время вдоха при растяжении эластических структур легких.
При форсированном выдохе сокращаются внутренние межреберные мышцы, которые активно уменьшают объем грудной полости и тем самым повышают плевральное давление, т.е. создают в альвеолах более высокое давление, чем в атмосфере. Кроме того, сокращаются мышцы брюшной стенки – косая и прямая мышцы живота, межкостные части внутренних межреберных мышц, а также мышцы, сгибающие позвоночник.
Альфа-мотонейроны диафрагмальной мышцы локализованы в шейных сегментах спинного мозга – С2 - С5 . В момент возбуждения нейроны посылают к мышечным волокнам ПД с частотой до 50 Гц и вызывают их тетанус.
Мотонейроны межреберных мышц расположены в грудном отделе спинного мозга (Th1 – Th12) и представлены α- и γ-мотонейронами. За счет γ-мотонейронов происходит оценка степени податливости грудной клетки к растяжению. Когда сила дыхательной мускулатуры недостаточна для акта вдоха, происходит активация проприорецепторов дыхательных мышц, а затем – как следствие – α-мотонейронов.
Респираторное сопротивление состоит из эластического и неэластического.
Эластичность включает в себя растяжимость и упругость. Эластические свойства легких обусловлены: 1) эластичностью альвеолярной ткани (35-40 %) и 2) поверхностным натяжением пленки жидкости, выстилающей альвеолы (55-65 %).
Растяжимость альвеолярной ткани связана с наличием эластиновых волокон, которые вместе с коллагеновыми волокнами (обеспечивают прочность альвеолярной стенки) образуют спиральную сеть вокруг альвеол. Длина эластиновых волокон при растяжении увеличивается почти в 2 раза, коллагеновых – на 10%.
Поверхностное натяжение создаётся за счёт сурфактанта, благодаря которому альвеолы не спадаются. Сурфактант обеспечивает эластичность альвеол.
В целом, эластическое сопротивление пропорционально степени растяжения легких при вдохе: чем глубже дыхание, тем больше эластическое сопротивление (эластическая тяга легких).
Реактивное сопротивление обусловлено: 1) аэродинамическим сопротивлением в дыхательных путях, 2) динамическим сопротивлением перемещающихся при дыхании тканей, 3) инерционным сопротивлением перемещающихся тканей. Основной фактор – аэродинамическое сопротивление.
Основное сопротивление, которое испытывает воздух, возникает при прохождении от трахеи до терминальных бронхиол. Именно в этих зонах совершается перемещение воздушного потока путем конвекции. Линейная скорость воздушного потока максимальна в трахее – 98,4 см/с и минимальна в альвеолярных мешках – 0,02 см/с.
В альвеолах (респираторной зоне) воздушный поток не движется, а происходит диффузия кислорода, углекислого газа, паров воды по градиенту парциального давления. В этой области воздушные потоки уже не испытывают аэродинамического сопротивления.
Особенности носового и ротового дыхания.
При дыхании через нос воздух проходит с большим сопротивлением, чем при дыхании через рот, поэтому при носовом дыхании работа дыхательных мышц возрастает и дыхание становится более глубоким. Атмосферный воздух, проходя через нос, согревается, увлажняется, очищается. Согревание происходит за счет тепла, отдаваемого кровью, протекающей по хорошо развитой системе кровеносных сосудов слизистой оболочки носа. Носовые ходы имеют сложно извилистое строение, что увеличивает площадь слизистой оболочки, с которой контактирует атмосферный воздух.
В носу происходит очищение вдыхаемого воздуха, причем в полости носа захватываются частицы пыли размером больше 5-6 мкм в диаметре, а более мелкие проникают в нижележащие отделы. В полости носа выделяется 0,5-1 л слизи в сутки, которая движется в задних двух третях носовой полости со скоростью 8-10 мм/мин, а в передней трети – 1-2 мм/мин. Каждые 10 минут проходит новый слой слизи, которая содержит бактерицидные вещества (лизоцим, секреторный иммуноглобулин А).
Ротовая полость наибольшее значение для дыхания имеет у низших животных у низших животных (амфибий, рыб). У человека дыхание через рот появляется при напряженном разговоре, быстрой ходьбе, беге, при другой интенсивной физической нагрузке, когда потребность в воздухе велика; при заболеваниях носа и носоглотки.
Дыхание через рот у детей первого полугодия жизни почти невозможно, так как большой язык оттесняет надгортанник кзади.
Газообмен в легких.
Газовая смесь в альвеолах, участвующих в газообмене, обычно называется альвеолярным воздухом или альвеолярной смесью газов. Содержание кислорода и углекислого газа в альвеолах зависит, прежде всего, от уровня альвеолярной вентиляции и интенсивности газообмена.
Содержание О2 в альвеолярной смеси – 14 об. %.
Содержание СО2 в альвеолярной смеси – 5,6 об. %.
Оставшаяся часть альвеолярной газовой смеси приходится на долю азота и очень небольшого количества инертных газов.
В атмосферном воздухе содержится:
20,9 об. % кислорода,
0,03 об. % углекислого газа,
79,1 об. % азота.
В выдыхаемом воздухе содержится:
16 об. % кислорода,
4,5 об. % углекислого газа,
79,5 об. % азота.
Состав альвеолярного воздуха при нормальном дыхании остается постоянным, так как при каждом вдохе обновляется лишь 1/7 часть альвеолярного воздуха. Кроме того газообмен в легких протекает непрерывно, при вдохе и при выдохе, что способствует выравниванию состава альвеолярной смеси.
Парциальное давление газов в альвеолах составляют: 100 мм рт.ст. для О2 и 40 мм рт.ст. для СО2. Парциальные давления кислорода и двуокиси углерода в альвеолах зависят от отношения альвеолярной вентиляции к перфузии легких (капиллярный кровоток). У здорового человека в покое это отношение равно 0,9-1,0. В патологических условиях это равновесие может претерпевать значительные сдвиги. При увеличении этого отношения парциальное давление кислорода в альвеолах увеличивается, а парциальное давление углекислого газа – падает и наоборот.
|
Рис. 28. Зависимости парциальных давлений О2 и СО2 в альвеолах от альвеолярной вентиляции у человека в состоянии покоя. Атмосферное давление соответствует давлению на уровне моря. Красная линия указывает уровни парциальных давлений О2 и СО2 при нормальной вентиляции. |
Нормовентиляция – парциальное давление углекислого газа в альвеолах поддерживается в пределах 40 мм рт.ст.
Гипервентиляция – усиленная вентиляция, превышающая метаболические потребности организма. Парциальное давление углекислого газа меньше 40 мм рт.ст.
Гиповентиляция сниженная вентиляция по сравнению с метаболическими потребностями организма. Парциальное давление СО2 больше 40 мм рт.ст.
Повышенная вентиляция – любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя независимо от парциального давления газов в альвеолах (например: при мышечной работе).
Эйпноэ – нормальная вентиляция в покое, сопровождающаяся субъективным чувством комфорта.
Гиперпноэ – увеличение глубины дыхания, независимо от того, повышена или снижена частота дыхания.
Тахипноэ – увеличение частоты дыхания.
Брадипноэ – снижение частоты дыхания.
Апноэ – остановка дыхания, обусловленная отсутствием стимуляции дыхательного центра (например: при гипокапнии).
Диспноэ – неприятное субъективное ощущение недостаточности дыхания или затрудненного дыхания (одышка).
Ортопноэ – выраженная одышка, связанная с застоем крови в легочных капиллярах в результате сердечной недостаточности. В горизонтальном положении это состояние усугубляется и поэтому лежать таким больным тяжело.
Асфиксия – остановка или угнетение дыхания, связанные главным образом с параличом дыхательного центра. Газообмен при этом резко нарушен: наблюдается гипоксия и гиперкапния.
Диффузия газов в легких.
Парциальное давление кислорода в альвеолах (100 мм рт.ст.) значительно выше, чем напряжение кислорода в венозной крови, поступающей в капилляры легких (40 мм рт.ст.). Градиент парциального давления углекислого газа направлен в обратную сторону (46 мм рт.ст. в начале легочных капилляров и 40 мм рт.ст. в альвеолах). Эти градиенты давлений являются движущей силой диффузии кислорода и двуокиси углерода, т.е. газообмена в легких.
Согласно закону Фика диффузный поток прямо пропорционален градиенту концентрации. Коэффициент диффузии для СО2 в 20-25 раз больше, чем кислорода. При прочих равных условиях углекислый газ диффундирует через определенный слой среды в 20-25 раз быстрее, чем кислород. Именно поэтому обмен СО2 в легких происходит достаточно полно, несмотря на небольшой градиент парциального давления этого газа.
При прохождении каждого эритроцита через легочные капилляры время, в течение которого возможна диффузия (время контакта) относительно невелико (около 0,3 с). Однако этого времени вполне достаточно для того, чтобы напряжения дыхательных газов в крови и их парциальное давление в альвеолах практически сравнялись.
Диффузионную способность легких, как и альвеолярную вентиляцию, следует рассматривать в отношении к перфузии (кровоснабжению) легких.