
- •Федеральное государственное бюджетное образовательное учреждение
- •Введение
- •1. Физиология возбудимых тканей
- •1.2. Потенциал покоя и потенциал действия
- •1.2.1. Потенциал покоя. Микроэлектродная техника (внутриклеточная регистрация биопотенциалов).
- •1.2.2. Потенциал действия.
- •1.3. Биологические мембраны и ионные каналы
- •1.4. Механизмы потенциала покоя и потенциала действия
- •1.4.1. Потенциал покоя.
- •1.5. Распространение потенциала действия
- •1.6. Законы проведения возбуждения в нервах
- •1.6.3. Закон изолированного проведения возбуждения в нервных стволах.
- •1.7. Законы раздражения возбудимых тканей
- •1.7.1. Закон силы.
- •1.7.2. Зависимость пороговой силы стимула от его длительности (закон времени).
- •1.7.3. Зависимость порога от крутизны нарастания раздражителя (закон градиента).
- •1.7.4. Закон “ все или ничего”.
- •1.7.5. Полярный закон раздражения (закон Пфлюгера).
- •1.7.6. Лабильность (функциональная подвижность). Парабиоз.
- •1.8.1. Химические синапсы.
- •1.8.2. Электрическая передача.
- •1.8.2.1. Электрические синапсы.
- •1.8.2.2. Эфаптическая передача.
- •1.9. Возникновение пд в афферентных нейронах. Рецепторный и генераторный потенциалы
- •У первичночувствующих рецепторов рецепторный потенциал является одновременно и генераторным, т.К. Вызывает генерацию пд в наиболее чувствительных участках мембраны.
- •1.10. Возникновение пд в эфферентных нейронах. Механизмы суммации псп
- •1.11. Скелетные мышцы
- •1.12. Сердечная мышца
- •1.13. Гладкие мышцы
- •1.14. Гландулоциты
- •2. Физиология центральной нервной системы
- •2.1. Нервная ткань
- •2.1.1. Нейроглия.
- •2.1.2. Гематоэнцефалический барьер.
- •2.1.3. Нейроны.
- •2.2. Нервная регуляция
- •2.2.1. Рефлекторный принцип регуляции.
- •2.2.3. Торможение.
- •2.4. Ствол мозга
- •2.4.1. Продолговатый мозг.
- •2.4.2. Мост.
- •2.4.3. Средний мозг.
- •2.4.4. Рефлексы Магнуса.
- •2.4.5. Ретикулярная формация.
- •2.4.6. Мозжечок.
- •2.4.7. Промежуточный мозг.
- •2.4.7.1. Таламус (зрительный бугор).
- •2.4.7.2. Гипоталамус.
- •2.5. Лимбическая система (висцеральный мозг)
- •2.6. Базальные ядра коры больших полушарий
- •2.7. Кора большого мозга
- •Кбм делится на древнюю, старую и новую:
- •2.7.1. Электрические проявления активности головного мозга.
- •2.8. Иерархия нейронных механизмов регуляции мышечной активности
- •2.9.Автономная (вегетативная) нервная система
- •Отличия соматической нервной системы от вегетативной
- •2.9.1. Метасимпатическая часть анс.
- •2.9.2. Парасимпатический отдел анс.
- •2.9.3. Симпатический отдел анс.
- •2.9.4. Трансдукторы.
- •2.9.5. Автономные (вегетативные) рефлексы.
- •2.9.6. Тонус анс.
- •3. Физиология сенсорных систем
- •3.1. Общая сенсорная физиология; 3.2. Зрение; 3.3. Слух; 3.4. Вестибулярная система; 3.5. Обоняние; 3.6. Вкус; 3.7. Соматосенсорная чувствительность; 3.8. Висцеральная чувствительность.
- •3.1. Общая сенсорная физиология
- •3.2. Зрение
- •3.3 Слух
- •3.4. Вестибулярная сенсорная система
- •3.5 Обоняние
- •3.6. Вкус
- •3.7. Соматосенсорная система
- •3.8. Висцеральная (интерорецептивная) система
- •4. Физиология высшей нервной деятельности
- •4.1. Высшая нервная деятельность и рефлекторная теория
- •1. По характеру безусловного рефлекса:
- •3. По времени отставления подкрепления:
- •4. Искусственные и натуральные:
- •5. Рефлексы высших и низших порядков:
- •4.2. Роль потребностей и мотиваций в формировании целенаправленной деятельности
- •Любое поведение всегда исходит из определенных мотивов и направлено на достижение определенных целей. Мотив – это то, что побуждает к деятельности – форма субъективного отражения потребности.
- •4.4. Развитие и особенности психической деятельности человека
- •4.5. Эмоции
- •4.6. Память
- •3 Стадия – формирование энграммы долговременной памяти.
- •4.7. Сознание, сон, гипноз, измененные формы сознания
- •5. Гуморальная регуляция
- •5.1. Общие вопросы гуморальной регуляции в организме
- •5.2. Гормоны желез внутренней секреции Гипофиз.
- •Гормоны аденогипофиза:
- •Гормоны нейрогипофиза.
- •Надпочечники.
- •Щитовидная железа
- •Околощитовидные железы
- •Поджелудочная железа
- •Половые железы
- •Женские половые гормоны.
- •6. Физиология крови
- •6.1. Функции и физико-химические свойства крови
- •Структура и функции плазмы крови.
- •Неэлектролиты: глюкоза, мочевина.
- •Белки плазмы - 7-8 % от массы плазмы. Альбумины – мол. М. 70000 (4-5 %). Глобулины – мол.М. До 450000 (до 3%). Фибриноген – мол.М. 340000 (0,2 – 0,4 %).
- •Альбумины 59,2 %
- •Значение белков плазмы.
- •6.2. Эритроциты
- •6.3. Лейкоциты
- •Моноциты:
- •6.4. Иммунитет
- •Лизоцим.
- •6.6. Группы крови
- •6.7. Тромбоциты
- •6.8. Гемостаз и фибринолиз
- •Сосудисто-тромбоцитарный гемостаз сводится к образованию тромбоцитарной пробки, или тромбоцитарного тромба.
- •Фибринолиз.
- •Фибринолитическая активность крови определяется соотношением активаторов и ингибиторов фибринолиза.
- •Естественные антикоагулянты.
- •7. Физиология кровообращения
- •7.1. Роль сердца в кровообращении, сердечный цикл
- •7.2. Основные законы гемодинамики
- •7.3. Функциональные особенности сосудов
- •7.4. Методы исследования сердечной деятельности
- •7.5. Методы исследования сердечнососудистой системы
- •7.6. Механизмы регуляции деятельности сердца
- •7.7. Регуляция тонуса сосудов
- •7.8. Регионарное кровообращение
- •7.9. Лимфообращение
- •8. Дыхание
- •8.1. Дыхание, его основные этапы
- •8.2. Механизм внешнего дыхания и газообмен в лёгких
- •8.3. Транспорт газов кровью
- •8.4. Регуляция дыхания
- •8.5. Особенности дыхания в условиях повышенного и пониженного барометрического давления
- •8.6. Первый вдох ребёнка, причины его возникновения. Возрастные изменения дыхания
- •9. Пищеварение
- •9.1. Концепции пищеварения и питания
- •9.2. Пищеварение в ротовой полости
- •9.3. Пищеварение в желудке
- •9.4. Пищеварение в кишечнике
- •10. Выделение
- •10.1. Выделение, функции почек и методы их изучения
- •Почки удаляют избыток воды, неорганических и органических веществ, конечные продукты обмена и природные вещества, выполняют ряд гомеостатических функций.
- •10.2. Нефрон и его кровоснабжение
- •10.3. Мочеобразование
- •10.4. Мочеиспускание
2.4.6. Мозжечок.
Особенности морфофункциональной организации:
1) кора мозжечка построена достаточно однотипно, имеет стереотипные связи, что создает условия для быстрой обработки информации;
2) основной нейронный элемент коры мозжечка – клетка Пуркинье, имеет большое количество входов и формирует единственный аксонный выход из мозжечка, коллатерали которого заканчиваются на его ядерных структурах;
3) на клетки Пуркинье проецируются практически все виды сенсорных раздражений;
4) выходы из мозжечка обеспечивают его связи с КБП, со стволовыми образованиями и СМ.
Мозжечок делится на старую, древнюю и новую части.
Старая – вестибулярный мозжечок – выраженные связи с вестибулярным анализатором.
Древняя получает информацию от проприоцептивных систем мышц, сухожилий, надкостницы, оболочек суставов.
Новая – информация от КБП по лобно-мостомозжечковому пути, от зрительной и слуховых рецептирующих систем.
Информация из мозжечка уходит через верхние и нижние ножки. Верхние – в таламус, в мост, красное ядро, ядра ствола, в ретикулярную формацию среднего мозга. Нижние – в продолговатый мозг (к его вестибулярным ядрам, оливам, РФ).
Средние ножки связывают новый мозжечок с лобной долей КБП.
Мозжечок принимает участие в различных видах деятельности организма: моторной, соматической, вегетативной, сенсорной, интегративной и т.д.. Однако эти функции мозжечок реализует через другие структуры ЦНС. Выполняет функцию оптимизации отношений между различными отделами НС, что реализуется, с одной стороны, активацией отдельных центров, с другой – удержанием этой активности в определенных рамках возбуждения, лабильности и т.д. Основнаяфункциямозжечка –координирующая.
После частичного повреждения мозжечка могут сохраняться все функции организма, но сами функции, порядок их реализации, соответствие потребностям трофики организма нарушаются.
Безмозжечковые животные Лючиани (1893 г.) – 3 стадии нарушения движений:
Стадия раздражения (травма);
Стадия выпадения функций;
Стадия компенсации (некоторого восстановления функций).
Симптомы после удаления мозжечка:
Атония (дистония) – нарушение регуляции мышечного тонуса
Астения – быстрая утомляемость
Астазия – нет слитного тетанического сокращения мыщц (тремор)
Атаксия – недостаточная координация движений
Деэквилибрация – нарушение равновесия
Дисметрия – избыточность или недостаточность амплитуды целенаправленных движений
Асинергия – нарушение деятельности мышц – синергистов
Адиадохокинез – невозможность быстро выполнять чередующиеся противоположные по направлению движения
Дизартрия – расстройство артикуляции.
2.4.7. Промежуточный мозг.
Основные образования – таламус и гипоталамус. Промежуточный мозг интегрирует сенсорные, двигательные и вегетативные реакции, необходимые для целостной деятельности организма.
2.4.7.1. Таламус (зрительный бугор).
Парное образование промежуточного мозга, включает около 120 ядер: специфические, ассоциативные, неспецифические.
Промежуточный центр переключения возбуждения на базальные ядра и кору. Подкорковый центр, в котором собираются почти все чувствительные импульсы с периферии (коллектор всех афферентаций, кроме обоняния).
Место формирования первичных ощущений (кроме обоняния).
Придает раздражениям аффективную окраску (кора же больших полушарий мозга способна расчленять раздражения и точно их локализовать).
Таламус является высшим центром болевой чувствительности – кора тормозит деятельность нервных центров таламуса так, что боль и связанные с ней реакции не воспринимаются сознанием слишком остро.
Специфические ядра.
Основной функциональной структурой являются «релейные» нейроны, у которых мало дендритов и длинный аксон. Их функция заключается в переключении информации, идущей в КБП от рецепторов. Информация поступает в строго определенные участки 3-4 слоев КБП (соматотопическая локализация). Отдельные нейроны специфических ядер таламуса возбуждаются рецепторами только своего типа. Нарушения специфических ядер приводит к выпадению отдельных видов чувствительности. К СЯТ идут сигналы от рецепторов кожи, глаз, уха, мышечной системы, интерорецепторов зон проекции блуждающего и чревного нервов, гипоталамуса.
Ассоциативные ядра.
Основные клеточные структуры ядер – мультиполярные, биполярные трехотростчатые нейроны, выполняющие полисенсорные функции. На них происходит конвергенция возбуждений разных модальностей, формируется интегрированный сигнал, который затем передается в ассоциативную кору мозга. Связи АЯТ с лимбической корой (поясной извилиной), с ассоциативными зонами теменной и височной долей КБП.
Неспецифические ядра.
Нейроны этих ядер образуют свои связи по ретикулярному типу. Их аксоны поднимаются в КБП и контактируют со всеми ее слоями, образуя не локальные, а диффузные связи. К НЯТ поступают связи из РФ ствола, гипоталамуса, лимбической системы, базальных ганглиев, специфических ядер таламуса.
Возбуждение неспецифических ядер вызывает генерацию в коре специфической веретенообразной электрической активности, свидетельствующей о развитии сонного состояния.
В таламусе интегрируются двигательные реакции с вегетативными процессами их обеспечивающими.
Конвергенция сенсорных стимулов в таламус обусловливает при патологических процессах в нем возникновение так называемых таламических неукротимых болей.