Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Реферат / 21. Барометрическая формула и распределение Больцмана

.doc
Скачиваний:
33
Добавлен:
21.04.2017
Размер:
36.86 Кб
Скачать

БАРОМЕТРИЧЕСКАЯ ФОРМУЛА И РАСПРЕДЕЛЕНИЕ БОЛЬЦМАНА.

Обозначим давление газа на некотором нулевом уровне Z = 0 (уровне моря, поверхности земли, дне сосуда и т.д.) через Р0, а давление на высоте Z над нулувым уровнем через Р. При увеличении высоты на dZ давление газа уменьшится на некоторую величину dР. Это уменьшение давления равно весу столба газа высотой dZ с площадью основания S = 1( рисунок)

dP = -gdZ, (1)

где -  - плотность газа. На основании уравнения состояния идеального газа, его плотность  равна

 = P/RT (2)

Следовательно,

dP = - (P/RT)g dZ,

откуда

dP/P = - (/RT)g dZ.

Интегрируя это выражение, находим

р z

 dP/P = - /R  g dZ/Т

p0 0

или z

ln P/P0 = - /R  g dZ/Т 0

На небольших высотах над поверхностью земли ускорение силы тяжести g можно считать постоянным, не зависящим от высоты Z, и вынести его за знак интеграла . Кроме тего, если газ находится в тепловом равновесии при постоянной, не зависящей от высоты Z температуре Т, то и Т можно вынести за знак интеграла. В этом случае получим

ln P/P0 = - gZ/RT,

откуда

Р/Р0 = е - gZ/RT

или

Р = Р0е-gZ/RT. (4)

Формула (4) характеризует изменение давления газа с высотой и называется барометрической формулой. Она показывает, что давление газа с высотой убывает по экспоненциальному закону.

Z

dZ P-dP

Z P

0 P0

Х

Принимая во внимание, что  = mNA и R = k NA , мы можем переписать барометрическую формулу в виде

Р = Р0 е - mgZ/ kT.

Так как P = nkT, то эта барометрическая формула выражает также закон убывания плотности газа с высотой

n = n0е-mgZ/kT (5)

где n и n0 – числа молекул в единице объема газа в точках, разность высот между которыми равна Z. Ввиду чрезвычайно малой массы газовых молекул убывание плотности газа и его давления заметно только при значительных изменениях высоты. В случае небольшого изменения высоты изменение давления и плотности газа оказываются весьма малыми. Поэтому в случае газа, заключенного в сосуд небольшой высоты, действием силы тяжести на молекулы газа можно пренебречь. Поскольку температура атмосферы Земли не постоянна и изменяется с высотой, то для более точного описания изменений ее давления и плотности с высотой в формулы (4) и (5) необходимо вводить соответствующие поправки на изменение температуры.

Поскольку входящая в формулу (5) величина mgZ представляет собой потенциальную энергию молекул в поле тяготения, то эту формулу можно переписать в виде

n = n0е–U(Z)/kT (6)

т.е. она выражает закон распределения молекул идеального газа по величине их потенциальной энергии в поле тяготения. Причем величина n0 имеет смысл числа частиц с потенциальной энергией равной нулю (n = n0 при U = 0).

в любом силовом поле распределение частиц в пространстве выражается законом

n(X,Y,Z) = n0 е – U(X,Y,Z) / kT - закон Больцмана (7)

где U(X,Y,Z) – потенциальная энергия частиц во внешнем силовом поле, зависящая от координат той точки, в которой находится частица; n(X,Y,Z) – концентрация частиц в точке с координатами X,Y,Z; n0 – число частиц в единице объема (концентрация) в том месте пространства, где их потенциальная энергия равна 0.

Больцман показал, что при постоянной Т концентрация частиц убывает с ростом U и возрастает с убыванием U, т.е. частицы концентрируются преимущественно в местах с меньшей потенциальной энергией.

Закон Больцмана (8) является весьма общим законом, применимым не только к идеальному газу, но и ко многим другим системам невзаимодействующих частиц.