
- •Содержание
- •Вопрос 19. Способы соединения обмоток 3-х фазного трансформатора. 39
- •Вопрос 21. Понятие группы соединения обмоток однофазного трансформатора. 42
- •Вопрос 22. Понятие группы соединения обмоток трехфазного трансформатора 44
- •Вопрос 23. Опыты холостого хода и короткого замыкания трансформатора. Кпд трансформатора. 46
- •Вопрос 1 Конструкция сердечников трансформатора.
- •Вопрос 2 Конструкция обмоток трансформатора.
- •Вопрос 3 Конструкция бака трансформатора.
- •Вопрос 4 Охлаждение трансформаторов.
- •Вопрос 5 Принцип действия трансформатора.
- •Вопрос 6 Холостой ход трансформатора.
- •Вопрос 7 . Эдс обмоток трансформатора.
- •Вопрос 8 . Векторная диаграмма холостого хода идеального трансформатора.
- •Вопрос 9 Векторная диаграмма холостого хода реального трансформатора.
- •Вопрос 10 Уравнение намагничивающих токов трансформатора.
- •11 Режим нагрузки реального трансформатора. Основные уравнения.
- •12 Векторная диаграмма нагруженного реального трансформатора.
- •13 Автоматическое саморегулирование трансформатора.
- •14 Внешняя характеристика трансформатора.
- •15 Конструкция магнитной системы 3-х фазного трансформатора.
- •16. Приведенный трансформатор. Пересчет параметров вторичной обмотки к числу витков первичной.
- •17. Т- образная схема замещения трансформатора.
- •18. Расчет параметров схемы замещения трансформатора по его паспортным данным.
- •Вопрос 19. Способы соединения обмоток 3-х фазного трансформатора.
- •20. Составляющие прямой обратной и нулевой последовательности эдс обмоток трансформатора.
- •Вопрос 21. Понятие группы соединения обмоток однофазного трансформатора.
- •Вопрос 22. Понятие группы соединения обмоток трехфазного трансформатора
- •Вопрос 23. Опыты холостого хода и короткого замыкания трансформатора. Кпд трансформатора.
- •24 Условия параллельной работы трансформаторов:
- •№25 Анализ влияния несовпадения коэффициентов трансформации на уравнительный ток при включении
- •Вопрос №26. Влияние несовпадения группы соединения трансформаторов на уравнительный ток при параллельном включении.
- •27 Параллельная работа трансформаторов
- •28. Автотрансформатор
- •29 Специальные типы трансформаторов
- •30 Обозначение и паспортные данные
- •31. Устройство трёхфазной асинхронной машины
- •32 Конструкция ад с короткозамкнутым ротором
- •33 Конструкция ад с фазным ротором
- •34 Вращающееся магнитное поле
- •35. Принцип действия асинхронной машины.
- •36. Скольжение асинхронного двигателя.
- •37. Регулирование частоты вращения асинхронных двигателей
- •38. Механическая характеристика двигателя.
- •39.Основные точки механической характеристики: критическое скольжение и частота, максимальный момент, пусковой момент, номинальный момент.
- •40.Конструкция обмоток статора. Однослойные и двухслойные петлевые обмотки.
- •41. Обмотки статора. Однослойные и двухслойные волновые обмотки
- •42. Схемы замещения асинхронной машины. Т-образные и г-образные схемы замещения
- •43. Приведение обмотки ротора к обмотке статора.
- •44. Механический момент и механическая мощность ад
- •45. Схемы пуска асинхронного двигателя с короткозамкнутым ротором.
- •46.Пуск двигателя с фазным ротором.
- •47. Регулирование скорости вращения асинхронного двигателя с фазным ротором.
- •48.Включение ад в однофазную цепь.
- •49.Вращающееся магнитное поле двухфазного тока.
- •50.Конденсаторные асинхронные двигатели.
- •51. Асинхронные исполнительные двигатели
- •52. Оператор поворота вектора
- •53.Разложение 3-х фазного не синусоидального тока на вектора прямой, обратной и нулевой последовательности.
- •54.Метод симметричных составляющих. Применение метода для анализа несимметричных режимов. Однофазное кз. Метод симметричных составляющих.
- •55.Потери мощности и кпд асинхронного двигателя.
- •56.0. Двухклеточные и глубокопазные ад
- •56.1. Глубокопазные двигатели
- •56.2. Двухклеточные двигатели
- •57.Рабочие характеристики.
- •58. Динамическое торможение асинхронного двигателя.
- •59. Торможение асинхронного двигателя методом противовключения.
- •60.Магнитное поле и мдс катушек и катушечных групп обмоток статора
Вопрос 23. Опыты холостого хода и короткого замыкания трансформатора. Кпд трансформатора.
1.
Опыт холостого хода. Холостым
ходом трансформатора называется такой
режим его работы, при котором первичная
обмотка включена на номинальное
напряжение ,
а вторичная обмотка разомкнута (рис.
10.1).
|
Рис. 10.1. Схема опыта холостого хода
|
Режим холостого хода позволяет опытным путем установить следующие характерные для трансформатора величины: а) коэффициент трансформации; б) ток холостого хода; в) потери мощности в стали.
Коэффициент трансформации трансформатора
,
где и
–
число витков обмоток.
Мощность определяет
затраты энергии в пределах трансформатора.
Она приблизительно равна потерям в
стали, поскольку потери в стали независимы
от нагрузки трансформатора, так как при
работе трансформатора магнитный поток
почти не меняется. Поэтому
при
любой нагрузке.
При холостом ходе .
Коэффициент мощности нагруженного
трансформатора в основном зависит от
коэффициента мощности нагрузки. При
холостом ходе
обычно
не превышает 0,2…0,3.
2. Опыт короткого замыкания. Короткое замыкание трансформатора – испытательный режим, при котором вторичная обмотка замкнута накоротко, а в первичную включено такое пониженное напряжение, чтобы ток первичной обмотки был равен номинальному (рис. 10.2). Это напряжение, называемое напряжением короткого замыкания, является одной из постоянных, характеризующих трансформатор. Обычно оно составляет 5…10 % номинального напряжения.
|
Потери в обмотках трансформатора определяются с помощью опыта короткого замыкания.
Мощность,
затраченная при коротком замыкании,
почти целиком расходуется на нагревание
обмоток трансформатора. По мощности
потерь при коротком замыкании можно
рассчитать потери в обмотках при любой
нагрузке трансформатора. Для этого
потери при замыкании относят
к току только первичной обмотки и
некоторому условному сопротивлению
,
выражающему пропорциональность между
током и мощностью:
;
.
Тогда потери в обмотках,
или потери в меди ,
при любой нагрузке находятся из значения
тока
первичной
обмотки:
.
Также потери в меди можно определить, используя коэффициент загрузки
;
.
Коэффициент полезного действия трансформатора рассчитывается из соотношения мощностей, приложенных ко вторичной и первичной обмоткам:
,
где –
потери мощности в трансформаторе.
3. Рабочий режим. Рабочий режим – это режим работы трансформатора под нагрузкой. В качестве нагрузки используется ламповый реостат (активная нагрузка). Постепенным увеличением числа включенных ламп доводят нагрузку до номинальной и снимают показания приборов в первичной и вторичной обмотках трансформатора.
КПД трансформатора.
24 Условия параллельной работы трансформаторов:
4.30. Допускается параллельная работа трансформаторов (автотрансформаторов) при условии, что ни одна из обмоток не будет нагружена током, превышающим допустимое значение силы тока для данной обмотки.
Параллельная работа трансформаторов допускается при следующих условиях:
1) группы соединений обмоток одинаковы;
2) соотношение мощностей трансформаторов не более чем 1:3;
3) коэффициенты трансформации отличаются не более чем на плюс 0,5 % и не меньше чем на минус 0,5 %;
4) напряжения КЗ отличаются не более чем на плюс 10 % и не меньше чем на минус 10 % среднеарифметического значения напряжения КЗ
трансформаторов, которые включаются на параллельную работу;
5) проведено фазирование трансформаторов.
Для выравнивания нагрузки между параллельно работающими трансформаторами с разными напряжениями КЗ допускается в небольших пределах изменять коэффициент трансформации путем переключения ответвлений при условии, что ни один из трансформаторов не будет перегружен.