Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Учебники / Genetic Hearing Loss Willems 2004

.pdf
Скачиваний:
136
Добавлен:
07.06.2016
Размер:
3.5 Mб
Скачать

444

Malgrange et al.

answer to these questions should lead to identification of the specific molecular and genetic interactions that are required for the development and the regeneration of the inner ear sensory epithelium.

REFERENCES

1.Corwin JT. Postembryonic production and aging in inner ear hair cells in sharks. J Comp Neurol 1981; 201(4):541–553.

2.Corwin JT. Postembryonic growth of the macula neglecta auditory detector in the ray, Raja clavata: continual increases in hair cell number, neural convergence, and physiological sensitivity. J Comp Neurol 1983; 217(3):345–356.

3.Popper AN, Hoxter B. Growth of a fish ear. 1. Quantitative analysis of hair cell and ganglion cell proliferation. Hearing Res 1984; 15(2):133–142.

4.Popper AN, Hoxter B. Growth of a fish ear. II Locations of newly proliferated sensory hair cells in the saccular epithelium of Astronotus ocellatus. Hearing Res 1990; 45(1–2):33–40.

5.Corwin JT. Perpetual production of hair cells and maturational changes in hair cell ultrastructure accompany postembryonic growth in an amphibian ear. Proc Natl Acad Sci USA 1985; 82(11):3911–3915.

6.Jorgensen JM, Mathiesen C. The avian inner ear. Continuous production of hair cells in vestibular sensory organs, but not in the auditory papilla. Naturwissenschaften 1988; 75(6):319–320.

7.Jorgensen JM. Regeneration of lateral line and inner ear vestibular cells. Ciba Found Symp 1991; 160:151–163.

8.Roberson DF, Weisleder P, Bohrer PS, Rubel EW. Ongoing production of sensory cells in the vestibular epithelium of the chick. Hearing Res 1992; 57(2):166–174.

9.Ruben RJ. Development of the inner ear of the mouse: a radioautographic study of terminal mitoses. Acta Otolaryngol (Stockh) 1967; 220(suppl):1–44.

10.Corwin JT, Cotanche DA. Regeneration of sensory hair cells after acoustic trauma. Science 1988; 240(4860):1772–1774.

11.Ryals BM, Rubel EW. Hair cell regeneration after acoustic trauma in adult coturnix quail. Science 1988; 240:1774–1776.

12.Katayama A, Corwin JT. Cell production in the chicken cochlea. J Comp Neurol 1989; 281(1):129–135.

13.Cotanche DA. Structural recovery from sound and aminoglycoside damage in the avian cochlea. Audiol Neurootol 1999; 4(6):271–285.

14.Forge A, Li L, Corwin JT, Nevill G. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 1993; 259(5101):1616–1619.

15.Warchol ME, Lambert PR, Goldstein BJ, Forge A, Corwin JT. Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 1993; 259(5101):1619–1622.

16.Zheng JL, Gao WQ. Analysis of rat vestibular hair cell development and

Hair Cell Differentiation and Regeneration

445

regeneration using calretinin as an early marker. J Neurosci 1997; 17(21):8270– 8282.

17.Kopke RD, Jackson RL, Li G, Rasmussen MD, Ho er ME, Frenz DA, et al. Growth factor treatment enhances vestibular hair cell renewal and results in improved vestibular function. Proc Natl Acad Sci USA 2001; 98(10):5886– 5891.

18.Kelley MW, Talreja DR, Corwin JT. Replacement of hair cells after laser microbeam irradiation in cultured organs of Corti from embryonic and neonatal mice. J Neurosci 1995; 4:3013–3026.

19.Sobkowicz HM, August BK, Slapnick SM. Cellular interactions as a response to injury in the organ of Corti in culture. Int J Dev Neurosci 1997; 15(4–5):463– 485.

20.Lefebvre PP, Malgrange B, Staecker H, Moonen G, Van De Water TR. Retinoic acid stimulates regeneration of mammalian auditory hair cells after ototoxic damage in vitro. Science 1993; 260/5108:692–694.

21.Zine A, de Ribaupierre F. Replacement of mammalian auditory hair cells. NeuroReport 1998; 9(2):263–268.

22.Steel KP, Kros CJ. A genetic approach to understanding auditory function. Nat Genet 2001; 27(2):143–149.

23.Cotanche DA, Lee KH, Stone JS, Picard DA. Hair cell regeneration in the bird cochlea following noise damage or ototoxic drug damage. Anat Embryol (Berl) 1994; 189:1–18.

24.Corwin JT, Oberholtzer JC. Fish n’ chicks: model recipes for hair-cell regeneration? Neuron 1997; 19(5):951–954.

25.Stone JS, Oesterle EC, Rubel EW. Recent insights into regeneration of auditory and vestibular hair cells. Curr Opin Neurol 1998; 11(1):17–24.

26.Kil J, Warchol ME, Corwin JT. Cell death, cell proliferation, and estimates of hair cell life spans in the vestibular organs of chicks. Hearing Res 1997; 114(1– 2):117–126.

27.Cotanche DA, Lee KH. Regeneration of hair cells in the vestibulocochlear system of birds and mammals. Curr Opin Neurobiol 1994; 4(4):509–514.

28.Girod DA, Duckert LG, Rubel EW. Possible precursors of regenerated hair cells in the avian cochlea following acoustic trauma. Hearing Res 1989; 42(2– 3):175–194.

29.Duckert LG, Rubel EW. Morphological correlates of functional recovery in the chicken inner ear after gentamycin treatment. J Comp Neurol 1993; 331:75– 96.

30.Stone JS, Rubel EW. Cellular studies of auditory hair cell regeneration in birds. Proc Natl Acad Sci USA 2000; 97(22):11714–11721.

31.Fekete DM, Muthukumar S, Karagogeos D. Hair cells and supporting cells share a common progenitor in the avian inner ear. J Neurosci 1998; 18(19): 7811–7821.

32.Adler HJ, Raphael Y. New hair cells arise from supporting cell conversion in the acoustically damaged chick inner ear. Neurosci Lett 1996; 205(1):17–20.

33.Jones JE, Corwin JT. Regeneration of sensory cells after laser ablation in the

446

Malgrange et al.

lateral line system: hair cell lineage and macrophage behavior revealed by time-lapse video microscopy. J Neurosci 1996; 16(2):649–662.

34.Adler HJ, Komeda M, Raphael Y. Further evidence for supporting cell conversion in the damaged avian basilar papilla. Int J Dev Neurosci 1997; 15(4–5): 375–385.

35.Rubel EW, Dew LA, Roberson DW. Mammalian vestibular hair cell regeneration. Science 1995; 267(5198):701–707.

36.Li L, Forge A. Morphological evidence for supporting cell to hair cell conversion in the mammalian utricular macula. Int J Dev Neurosci 1997; 15(4–5):433– 446.

37.Zheng JL, Keller G, Gao WQ. Immunocytochemical and morphological evidence for intracellular self-repair as an important contributor to mammalian hair cell recovery. J Neurosci 1999; 19(6):2161–2170.

38.Sobkowicz HM, August BK, Slapnick SM. Epithelial repair following mechanical injury of the developing organ of Corti in culture: an electron microscopic and autoradiographic study. Exp Neurol 1992; 115(1):44–49.

39.Sobkowicz HM, Slapnick SM, August BK. The kinocilium of auditory hair cells and evidence for its morphogenetic role during the regeneration of stereocilia and cuticular plates. J Neurocytol 1995; 24(9):633–653.

40.Raphael Y, Altschuler RA. Reorganization of cytoskeletal and junctional proteins during cochlear hair cell degeneration. Cell Motil Cytoskel 1991; 18: 215– 227.

41.Jat PS, Noble MD, Ataliotis P, Tanaka Y, Yannoutsos N, Larsen L, et al. Direct derivation of conditionally immortal cell lines from an H-2Kb-tsA58 transgenic mouse. Proc Natl Acad Sci USA 1991; 88(12):5096–5100.

42.Kalinec F, Kalinec G, Boukhvalova M, Kachar B. Establishment and characterization of conditionally immortalized organ of corti cell lines. Cell Biol Int 1999; 23(3):175–184.

43.Rivolta MN, Grix N, Lawlor P, Ashmore JF, Jagger DJ, Holley MC. Auditory hair cell precursors immortalized from the mammalian inner ear. Proc R Soc Lond B Biol Sci 1998; 265(1406):1595–1603.

44.Abdouh A, Despres G, Romand R. Hair cell overproduction in the developing mammalian cochlea in culture. NeuroReport 1993; 5(1):33–36.

45.Lefebvre PP, Malgrange B, Thiry M, Breuskin I, Van De Water TR, Moonen G. Supernumerary outer hair cells arise external to the last row of sensory cells in the organ of corti. Acta Otolaryngol 2001; 121(2):164–168.

46.Chardin S, Romand R. Factors modulating supernumerary hair cell production in the postnatal rat cochlea in vitro. Int J Dev Neurosci 1997; 15(4–5): 497–507.

47.Lefebvre PP, Malgrange B, Thiry M, Van De Water TR, Moonen G. Epidermal growth factor upregulates production of supernumerary hair cells in neonatal rat organ of Corti explants. Acta Otolaryngol (Stockh) 2000; 120: 142–145.

48.Daudet N, Vago P, Ripoll C, Humbert G, Pujol R, Lenoir M. Characterization of atypical cells in the juvenile rat organ of corti after aminoglycoside ototoxicity. J Comp Neurol 1998; 401(2):145–162.

Hair Cell Differentiation and Regeneration

447

49.Daudet N, Ripoll C, Lenoir M. Transforming growth factor-a-induced cellular changes in organotypic culture of juvenile, amikacin-treated rat organ of Corti. J Comp Neurol 2002; 442:6–22.

50.Lenoir M, Vago P. Does the organ of Corti attempt to di erentiate new hair cells after antibiotic intoxication in rat pups? Int J Dev Neurosci 1997; 15(4–5): 487–495.

51.Parietti C, Vago P, Humbert G, Lenoir M. Attempt at hair cell neodi erentiation in developing and adult amikacin intoxicated rat cochleae. Brain Res 1998; 813(1):57–66.

52.Zheng JL, Gao WQ. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 2000; 3(6):580–586.

53.Malgrange B, Belachew S, Thiry M, Nguyen L, Rogister B, Alvarez M-L, et al. Proliferative generation of mammalian auditory hair cells in culture. Mech Dev 2002; 112:79–88.

54.Lewis J. Rules for the production of sensory cells. Ciba Found Symp 1991; 160:25–39.

55.Goodyear R, Holley M, Richardson G. Hair and supporting-cell di erentiation during the development of the avian inner ear. J Comp Neurol 1995; 351(1):81–93.

56.Haddon C, Jiang YJ, Smithers L, Lewis J. Delta-Notch signalling and the patterning of sensory cell di erentiation in the zebrafish ear: evidence from the mind bomb mutant. Development 1998; 125(23):4637–4644.

57.Riley BB, Chiang M, Farmer L, Heck R. The deltaA gene of zebrafish mediates lateral inhibition of hair cells in the inner ear and is regulated by pax2.1. Development 1999; 126(24):5669–5678.

58.Lanford PJ, Lan Y, Jiang RL, Lindsell C, Weinmaster G, Gridley T, et al. Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet 1999; 21(3):289–292.

59.Tsai H, Hardisty RE, Rhodes C, Kiernan AE, Roby P, Tymowska-Lalanne Z, et al. The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum Mol Genet 2001; 10(5):507– 512.

60.Kiernan AE, Ahituv N, Fuchs H, Balling R, Avraham KB, Steel KP, et al. The Notch ligand Jagged1 is required for inner ear sensory development. Proc Natl Acad Sci USA 2001; 98(7):3873–3878.

61.Zhang N, Martin GV, Kelley MW, Gridley T. A mutation in the lunatic fringe gene suppresses the e ects of a Jagged2 mutation on inner hair cell development in the cochlea. Curr Biol 2000; 10(11):659–662.

62.Stone JS, Rubel EW. Delta1 expression during avian hair cell regeneration. Development 1999; 126(5):961–973.

63.Xiang M, Zhou L, Peng YW, Eddy RL, Shows TB, Nathans J. Brn-3b: a POU domain gene expressed in a subset of retinal ganglion cells. Neuron 1993; 11(4):689–701.

64.Ryan AF. Transcription factors and the control of inner ear development. Semin Cell Dev Biol 1997; 8(3):249–256.

448

Malgrange et al.

65.Xiang M, Zhou L, Macke JP, Yoshioka T, Hendry SH, Eddy RL, et al. The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci 1995; 15(7 Pt 1):4762–4785.

66.Artinger KB, Fedtsova N, Rhee JM, Bronner-Fraser M, Turner E. Placodal origin of Brn-3-expressing cranial sensory neurons. J Neurobiol 1998; 36(4): 572–585.

67.Gerrero MR, McEvilly RJ, Turner E, Lin CR, O’Connell S, Jenne KJ, et al. Brn-3.0: a POU-domain protein expressed in the sensory, immune, and endocrine systems that functions on elements distinct from known octamer motifs. Proc Natl Acad Sci USA 1993; 90(22):10841–10845.

68.Erkman L, McEvilly RJ, Luo L, Ryan AK, Hooshmand F, O’Connell SM, et al. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 1996; 381(6583):603–606.

69.Xiang M, Gan L, Li D, Chen ZY, Zhou L, O’Malley BW, et al. Essential role of POU-domain factor Brn-3c in auditory and vestibular hair cell development. Proc Natl Acad Sci USA 1997; 94(17):9445–9450.

70.Xiang M, Gan L, Li D, Zhou L, Chen ZY, Wagner D, et al. Role of the Brn-3 family of POU-domain genes in the development of the auditory/vestibular, somatosensory, and visual systems. Cold Spring Harbor Symp Quant Biol 1997; 62:325–336.

71.Xiang M, Gao WQ, Hasson T, Shin JJ. Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells. Development 1998; 125:3935–3946.

72.Kageyama R, Sasai Y, Akazawa C, Ishibashi M, Takebayashi K, Shimizu C, et al. Regulation of mammalian neural development by helix-loop-helix transcription factors. Crit Rev Neurobiol 1995; 9(2–3):177–188.

73.Kageyama R, Ishibashi M, Takebayashi K, Tomita K. bHLH transcription factors and mammalian neuronal di erentiation. Int J Biochem Cell Biol 1997; 29(12):1389–1399.

74.Lee JE. Basic helix-loop-helix genes in neural development. Curr Opin Neurobiol 1997; 7(1):13–20.

75.Akazawa C, Ishibashi M, Shimizu C, Nakanishi S, Kageyama R. A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J Biol Chem 1995; 270(15):8730–8738.

76.Cau E, Gradwohl G, Fode C, Guillemot F. Math1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 1997; 124(8): 1611–1621.

77.Kageyama R, Nakanishi S. Helix-loop-helix factors in growth and di erentiation of the vertebrate nervous system. Curr Opin Genet Dev 1997; 7(5):659–665.

78.Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben Arie N, Eatock RA, et al. Math1: an essential gene for the generation of inner ear hair cells. Science 1999; 284(5421):1837–1841.

79.Zheng JL, Shou J, Guillemot F, Kageyama R, Gao W. Hes1 is a negative

Hair Cell Differentiation and Regeneration

449

regulator of inner ear hair cell di erentiation. Development 2000; 127(21): 4551–4560.

80.Zine A, Aubert A, Qiu J, Therianos S, Guillemot F, Kageyama R, et al. Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. J Neurosci 2001; 21(13):4712–4720.

81.Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83(6): 835–839.

82.Kastner P, Grondona JM, Mark M, Gansmuller A, LeMeur M, Decimo D, et al. Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 1994; 78(6):987–1003.

83.Lohnes D, Dierich A, Ghyselinck N, Kastner P, Lampron C, LeMeur M, et al. Retinoid receptors and binding proteins. J Cell Sci Suppl 1992; 16:69–76.

84.Leid M, Kastner P, Chambon P. Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem Sci 1992; 17:427–433.

85.Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell 1995; 83(6):841–850.

86.Bavik C, Ward SJ, Chambon P. Developmental abnormalities in cultured mouse embryos deprived of retinoic by inhibition of yolk-sac retinol binding protein synthesis. Proc Natl Acad Sci USA 1996; 93(7):3110–3114.

87.Morriss-Kay G. Retinoic acid and craniofacial development: molecules and morphogenesis. Bioessays 1993; 15(1):9–15.

88.Dolle´P, Ruberte E, Leroy P, Morriss-Kay G, Chambon P. Retinoic acid receptors and cellular retinoid binding proteins. I. A systematic study of their di erential pattern of transcription during mouse organogenesis. Development 1990; 110:1133–1151.

89.Dolle P, Fraulob V, Kastner P, Chambon P. Developmental expression of murine retinoid X receptor (RXR) genes. Mech Dev 1994; 45(2):91–104.

90.Romand R, Sapin V, Dolle P. Spatial distributions of retinoic acid receptor gene transcripts in the prenatal mouse inner ear. J Comp Neurol 1998; 393(3): 298–308.

91.Raz Y, Kelley MW. Retinoic acid signaling is necessary for the development of the organ of Corti. Dev Biol 1999; 213:180–193.

92.Lohnes D, Mark M, Mendelsohn C, Dolle P, Dierich A, Gorry P, et al. Function of the retinoic acid receptors (RARs) during development. I. Craniofacial and skeletal abnormalities in RAR double mutants. Development 1994; 120(10):2723–2748.

93.Kelley MW, Xu XM, Wagner MA, Warchol ME, Corwin JT. The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture. Development 1993; 119(4): 1041–1053.

94.Represa J, Sanchez A, Miner C, Lewis J, Giraldez F. Retinoic acid modulation of the early development of the inner ear is associated with the control of c-fos expression. Development 1990; 110(4):1081–1090.

450

Malgrange et al.

95.Leon Y, Sanchez JA, Miner C, Ariza-McNaughton L, Represa JJ, Giraldez F. Developmental regulation of Fos-protein during proliferative growth of the otic vesicle and its relation to di erentiation induced by retinoic acid. Dev Biol 1995; 167(1):75–86.

96.Forge A, Li L, Corwin JT, Nevill G. Ultrastructural evidence for hair cell regeneration in the mammalian inner ear. Science 1993; 259:1616–1619.

97.Warchol ME, Lambert PR, Goldstein BJ, Forge A, Corwin JT. Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans. Science 1993; 259:1619–1622.

98.Ylikoski J, Pirvola U, Eriksson U. Cellular retinol-binding protein type I is prominently and di erentially expressed in the sensory epithelium of the rat cochlea and vestibular organs. J Comp Neurol 1994; 349(4):596–602.

99.Romand R, Sapin V, Ghyselinck NB, Avan P, Le Calvez S, Dolle P, et al. Spatio-temporal distribution of cellular retinoid binding protein gene transcripts in the developing and the adult cochlea: morphological and functional consequences in C. Eur J Neurosci 2000; 12(8):2793–2804.

100.Lee KH, Cotanche DA. Potential role of bFGF and retinoic acid in the regeneration of chicken cochlear hair cells. Hear Res 1996; 94(1–2):1–13.

101.Lefebvre PP, Frenz DA, Staecker H, Represa J, Malgrange B, Ruben RJ, et al. Retinoic acid: a primary morphogen that a ects both the di erentiation and regeneration of mammalian auditory hair cells. In: Salvi R, Henderson D, eds. Auditory System Plasticity and Regeneration. New York: Thieme Medical, 1996:1–12.

102.DeLong GR. E ects of nutrition on brain development in humans. Am J Clin Nutr 1993; 57(2 suppl):286S–290S.

103.Forrest D. Deafness and goiter: molecular genetic considerations. J Clin Endocrinol Metab 1996; 81(8):2764–2767.

104.Uziel A. Periods of sensitivity to thyroid hormone during the development of the organ of Corti. Acta Otolaryngol Suppl 1986; 429:23–27.

105.O’Malley BW, Li D, Turner DS. Hearing loss and cochlear abnormalities in the congenital hypothyroid (hyt/hyt) mouse. Hear Res 1995; 88(1–2):181–189.

106.Brent GA, Moore DD, Larsen PR. Thyroid hormone regulation of gene expression. Annu Rev Physiol 1991; 53:17–35.

107.Lazar MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 1993; 14(2):184–193.

108.Bradley DJ, Towle HC, Young WS, III. Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc Natl Acad Sci USA 1994; 91(2):439–443.

109.Lautermann J, Ten Cate WJ. Postnatal expression of the alpha-thyroid hormone receptor in the rat cochlea. Hearing Res 1997; 107(1–2):23–28.

110.Rusch A, Erway LC, Oliver D, Vennstrom B, Forrest D. Thyroid hormone receptor beta-dependent expression of a potassium conductance in inner hair cells at the onset of hearing. Proc Natl Acad Sci USA 1998; 95(26):15758– 15762.

Hair Cell Differentiation and Regeneration

451

111.Rivolta MN, Holley MC. GATA3 is downregulated during hair cell di erentiation in the mouse cochlea. J Neurocytol 1998; 27(9):637–647.

112.Pata I, Studer M, van Doorninck JH, Briscoe J, Kuuse S, Engel JD, et al. The transcription factor GATA3 is a downstream e ector of Hoxbl specification in rhombomere 4. Development 1999; 126(23):5523–5531.

113.van Doorninck JH, van Der WJ, Karis A, Goedknegt E, Engel JD, Coesmans M, et al. GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J Neurosci 1999; 19(12):RC12.

114.Lawoko-kerali G, Rivolta MN, Holley M. Expression of the transcription factors GATA3 and Pax2 during development of the mammalian inner ear. J Comp Neurol 2002; 442:378–391.

115.Van Esch H, Devriendt K. Transcription factor GATA3 and the human HDR syndrome. Cell Mol Life Sci 2001; 58(9):1296–1300.

116.Wegner M. From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res 1999; 27(6):1409–1420.

117.Kuhlbrodt K, Herbarth B, Sock E, Hermans-Borgmeyer I, Wegner M. Sox10, a novel transcriptional modulator in glial cells. J Neurosci 1998; 18(1):237–250.

118.Pusch C, Hustert E, Pfeifer D, Sudbeck P, Kist R, Roe B, et al. The SOX10/ Sox10 gene from human and mouse: sequence, expression, and transactivation by the encoded HMG domain transcription factor. Hum Genet 1998; 103(2): 115–123.

119.Watanabe K, Takeda K, Katori Y, Ikeda K, Oshima T, Yasumoto K, et al. Expression of the Sox10 gene during mouse inner ear development. Brain Res Mol Brain Res 2000; 84(1–2):141–145.

120.Sham MH, Lui VC, Chen BL, Fu M, Tam PK. Novel mutations of SOX10 suggest a dominant negative role in Waardenburg-Shah syndrome. J Med Genet 2001; 38(9):E30.

121.Hasson T, Mooseker MS. The growing family of myosin motors and their role in neurons and sensory cells. Curr Opin Neurobiol 1997; 7(5):615–623.

122.Mburu P, Liu XZ, Walsh J, Saw D, Cope MJ, Gibson F, et al. Mutation analysis of the mouse myosin VIIA deafness gene. Genes Funct 1997; 1(3): 191– 203.

123.Weil D, Kussel P, Blanchard S, Levy G, Levi-Acobas F, Drira M, et al. The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nat Genet 1997; 16(2):191–193.

124.Wang A, Liang Y, Fridell RA, Probst FJ, Wilcox ER, Touchman JW, et al. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 1998; 280(5368):1447–1451.

125.Probst FJ, Fridell RA, Raphael Y, Saunders TL, Wang A, Liang Y, et al. Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 1998; 280(5368):1444–1447.

126.Avraham KB, Hasson T, Steel KP, Kingsley DM, Russell LB, Mooseker MS, et al. The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 1995; 11(4):369–375.

452

Malgrange et al.

127.Self T, Mahony M, Fleming J, Walsh J, Brown SD, Steel KP. Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 1998; 125(4):557–566.

128.Self T, Sobe T, Copeland NG, Jenkins NA, Avraham KB, Steel KP. Role of myosin VI in the di erentiation of cochlear hair cells. Dev Biol 1999; 214(2):331–341.

129.Anderson DW, Probst FJ, Belyantseva IA, Fridell RA, Beyer L, Martin DM, et al. The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells. Hum Mol Genet 2000; 9(12):1729–1738.

130.Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 1995; 9(10):1149–1163.

131.Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13(12):1501–1512.

132.Durand B, Gao FB, Ra M. Accumulation of the cyclin-dependent kinase inhibitor p27/Kip1 and the timing of oligodendrocyte di erentiation. EMBO J 1997; 16(2):306–317.

133.Chen P, Segil N. p27Kip1 links cell proliferation to morphogenesis in the developing organ of Corti. Development 1999; 126(8):1581–1590.

134.Lowenheim H, Furness DN, Kil J, Zinn C, Gultig K, Fero ML, et al. Gene disruption of p27Kip1 allows cell proliferation in the postnatal and adult organ of Corti. Proc Natl Acad Sci USA 1999; 96(7):4084–4088.

135.Gu R, Griguer CE, Lynch ED, Kil J. p27 antisense oligonucleotides triggers supporting cell proliferation in the organ of Corti in vivo. Abstracts of XXXth ARO, St Petersburg 2001; 21490.

136.Pirvola U, Cao Y, Oellig C, Suoqiang Z, Pettersson RF, Ylikoski J. The site of action of neuronal acidic fibroblast growth factor is the organ of Corti of the rat cochlea. Proc Natl Acad Sci USA 1995; 92(20):9269–9273.

137.Malgrange B, Rogister B, Lefebvre PP, Mazy-Servais C, Welcher AA, Bonnet C, et al. Expression of growth factors and their receptors in the postnatal rat cochlea. Neurochem Res 1998; 23(8):1135–1140.

138.Pickles JO, Harter C, Rebillard G. Fibroblast growth factor receptor expression in outer hair cells of rat cochlea. NeuroReport 1998; 9(18):4093–4095.

139.Pirvola U, Spencer-Dene B, Xing-Qun L, Kettunen P, Thesle I, Fritzsch B, et al. FGF/FGFR-2(IIIb) signaling is essential for inner ear morphogenesis. J Neurosci 2000; 20(16):6125–6134.

140.Pickles JO. The expression of fibroblast growth factors and their receptors in the embryonic and neonatal mouse inner ear. Hearing Res 2001; 155(1–2):54– 62.

141.Zheng JL, Helbig C, Gao WQ. Induction of cell proliferation by fibroblast and insulin-like growth factors in pure rat inner ear epithelial cell cultures. J Neurosci 1997; 17(1):216–226.

142.Bermingham-McDonogh O, Stone JS, Reh TA, Rubel EW. FGFR3 Expression during development and regeneration of the chick inner ear sensory epithelia. Dev Biol 2001; 238(2):247–259.

Hair Cell Differentiation and Regeneration

453

143.Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 1996; 12(4):390–397.

144.Oesterle EC, Tsue TT, Rubel EW. Induction of cell proliferation in avian inner ear sensory epithelia by insulin-like growth factor-I and insulin. J Comp Neurol 1997; 380(2):262–274.

145.Lambert PR. Inner ear hair cell regeneration in a mammal: identification of a triggering factor. Laryngoscope 1994; 104(6 Pt 1):701–718.

146.Yamashita H, Oesterle EC. Induction of cell proliferation in mammalian inner-ear sensory epithelia by transforming growth factor alpha and epidermal growth factor. Proc Natl Acad Sci USA 1995; 92(8):3152–3155.

147.Kuntz AL, Oesterle EC. Transforming growth factor a with insulin stimulates cell proliferation in vivo in adult rat vestibular sensory epithelium. J Comp Neurol 1998; 399(3):413–423.

148.Staecker H, Lefebvre PP, Malgrange B, Moonen G, Van De Water TR. Regeneration of mammalian auditory hair cells. Science 1995; 267:707–711.

149.Navaratnam DS, Su HS, Scott SP, Oberholtzer JC. Proliferation in the auditory receptor epithelium mediated by a cyclic AMP-dependent signaling pathway. Nat Med 1996; 2(10):1136–1139.

150.Montcouquiol M, Corwin JT. Brief treatments with forskolin enhance S-phase entry in balance epithelia from the ears of rats. J Neurosci 2001; 21(3):974– 982.

151.Montcouquiol M, Corwin JT. Intracellular signals that control cell proliferation in mammalian balance epithelia: key roles for phosphatidylinositol-3 kinase, mammalian target of rapamycin, and S6 kinases in preference to calcium, protein kinase C, and mitogen-activated protein kinase. J Neurosci 2001; 21(2):570–580.

152.Eddison M, Le R, I, Lewis J. Notch signaling in the development of the inner ear: lessons from Drosophila. Proc Natl Acad Sci USA 2000; 97(22):11692– 11699.

153.Adam J, Myat A, Le R, I, Eddison M, Henrique D, Ish-Horowicz D, et al. Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila senseorgan development. Development 1998; 125(23):4645–4654.

154.Morrison A, Hodgetts C, Gossler A, Hrabe d, Lewis J. Expression of Delta1 and Serrate1 (Jagged1) in the mouse inner ear. Mech Dev 1999; 84(1–2):169– 172.

155.Lewis AK, Frantz GD, Carpenter DA, de Sauvage FJ, Gao WQ. Distinct expression patterns of Notch family receptors and ligands during development of the mammalian inner ear. Mech Dev 1998; 78(1–2):159–163.

156.Zine A, Van De Water TR, de Ribaupierre F. Notch signaling regulates the pattern of auditory hair cell di erentiation in mammals. Development 2000; 127(15):3373–3383.

157.Weir J, Rivolta MN, Holley MC. Notch signaling and the emergence of auditory hair cells. Arch Otolaryngol Head Neck Surg 2000; 126(10):1244–1248.