
- •Введение
- •1. Общие сведения об энергетических системах и электрических сетях. Классификация электрических сетей
- •2. Конструкции, назначение и основные характеристики электрооборудования лэп и пс
- •3. Режимы. Параметры режима и параметры сети. Схемы замещения
- •4. Схемы замещения лэп. Определение параметров схем замещения лэп
- •5. Характерные соотношения между параметрами лэп. Расчет режимов лэп при заданном токе и напряжении в конце линии. Векторные диаграммы
- •6. Падение и потеря напряжения в линии. Расчет режима лэп при заданной мощности нагрузки и напряжении в конце и начале линии
- •7. Схема замещения и параметры двухобмоточного трансформатора и трансформатора с расщепленной обмоткой низшего напряжения
- •8. Схема замещения и определение параметров трехобмоточного трансформатора
- •9. Схемы замещения и определение параметров автотрансформатора
- •10. Расчеты режимов электрических сетей. Расчетные схемы для разомкнутых и замкнутых электрических сетей. Понятие расчетной нагрузки
- •11. Расчет режимов электрических сетей с n-нагрузками. Расчет режимов кольцевых сетей
- •12. Совместный расчет режима сетей с разными номинальными напряжениями
- •13. Балансы мощностей в электроэнергетической системе. Компенсация реактивной мощности
- •14. Методы регулирования напряжения. Встречное регулирование напряжения
- •15. Определение номинального напряжения проектируемой сети. Особенности выбора и проверки сечений в разомкнутых и простых замкнутых сетях
- •16. Качество электроэнергии и его связь с балансом мощности
- •1.1. Общие сведения об энергетических системах и электрических сетях
- •1.2. Основные технические задачи, проблемы передачи и распределения электроэнергии
- •1.3. Объединенные энергосистемы, их преимущества
- •Задания для самостоятельной работы:
- •1.4. Классификация электрических сетей
- •1.5. Обозначения и некоторые сведения об электрических величинах
- •Задания для самостоятельной работы:
- •2.1. Особенности эксплуатации и начальные сведения о требованиях к выбору основных конструктивных элементов лэп, кл и оборудования подстанций
- •2.2. Конструкции и маркировка основных элементов лэп
- •2.3. Конструкции и маркировка кл
- •2.4. Виды силовых трансформаторов, автотрансформаторов и их условные обозначения
- •Задания для самостоятельной работы:
- •Режимы. Параметры режима и параметры сети
- •Понятие статической и динамической устойчивости
- •Схемы замещения. Продольные и поперечные ветви схем замещения
- •Линия электропередачи как элемент электрической сети
- •3.5. Погонные (удельные) параметры линий
- •Задания для самостоятельной работы:
- •Схемы замещений лэп для напряжений 35-220 кВ
- •Активное и реактивное сопротивления линий. Расщепление проводов
- •Активная и реактивная проводимости линий. Эффект «короны». Зарядная мощность линии
- •Схемы замещений кл для напряжений 10-220 кВ
- •Задания для самостоятельной работы:
- •Характерные соотношения между параметрами лэп. Транспозиция проводов
- •Среднее значение проводимости для вл , выполненной одиночными проводами во ср2,7510-6 См/км.
- •Расчет режима лэп при заданном токе нагрузки и напряжении в конце линии
- •Векторная диаграмма для расчета режима лэп при заданном токе нагрузки и напряжении в конце линии для линии с нагрузкой
- •Векторная диаграмма для расчета режима лэп при заданном токе нагрузки и напряжении в конце линии для линии в режиме холостого хода
- •Задания для самостоятельной работы:
- •Падение и потеря напряжения в линии. Продольная и поперечная составляющие падения напряжения
- •6.2. Расчет режима лэп при заданной мощности нагрузки и напряжении в конце линии
- •6.3. Расчет режима лэп при заданной мощности нагрузки и напряжении в начале линии: использование нелинейного уравнения узловых напряжений
- •6.4. Расчет режима лэп при заданной мощности нагрузки и напряжении в начале линии: использование приближенного расчета в два этапа
- •Задания для самостоятельной работы:
- •7.1. Схема замещения двухобмоточного трансформатора
- •7.2. Опыт холостого хода для двухобмоточного трансформатора
- •7.3. Опыт короткого замыкания для двухобмоточного трансформатора
- •7.4. Определение потерь в двухобмоточных трансформаторах
- •7.5. Схема замещения и параметры трансформатора с расщепленной обмоткой низшего напряжения
- •Задания для самостоятельной работы:
- •8.1. Схема замещения трехобмоточного трансформатора. Параметры
- •8.2. Виды исполнений трехобмоточного трансформатора
- •8.3. Определение потерь в трехобмоточных трансформаторах
- •9.1. Схема соединения обмоток автотрансформатора
- •9.2. Схема замещения автотрансформатора
- •9.3. Особенности определения параметров и применение автотрансформаторов
- •Автотрансформаторы
- •Задания для самостоятельной работы:
- •10.1. Расчеты режимов электропередачи электрических сетей
- •Расчеты режимов электрических сетей.
- •Практическое применение нашли два основных метода расчета:
- •10.2. Расчетные схемы для разомкнутых и замкнутых электрических сетей
- •10.3. Понятие расчетной нагрузки
- •10.4. Определение потерь электроэнергии в лэп и в электрических сетях Вычисление расчетной мощности подстанции предшествует расчету режима сети
- •11.1. Расчет режимов электрических сетей с n-нагрузками «по данным конца»
- •11.2. Расчет режимов электрических сетей с n-нагрузками «по данным начала»
- •11.3. Расчеты установившихся режимов линий с двухсторонним питанием и замкнутых сетей простейшей конфигурации
- •Задания для самостоятельной работы:
- •12.1. Особенности совместного расчета режима участков сетей с разными номинальными напряжениями
- •12.2. Определение напряжения на стороне низшего напряжения подстанции
- •12.3. Расчеты режима линий с двусторонним питанием при различающихся напряжениях источников питания (по концам)
- •Послеаварийные режимы
- •Задания для самостоятельной работы:
- •13.1. Балансы мощностей в электроэнергетической системе
- •13.2. Источники реактивной мощности в ээс. Основные современные типы компенсирующих устройств
- •13.2.1 Синхронные компенсаторы
- •Величина эдс Eq определяется величиной тока возбуждения. Росту тока возбуждения соответсвует увеличение эдс Eq.
- •13.2. Батареи конденсаторов
- •13.3. Выбор мощности ку в задачах регулирования напряжений
- •13.4. Влияние ку на режимы электрических сетей
- •14.1. Основные методы и способы регулирования напряжения в ээс
- •14.2. Сравнение способов регулирования напряжения
- •14.3. Регулирование напряжения трансформаторов под нагрузкой
- •14.4. Встречное регулирование напряжения
- •Задания для самостоятельной работы:
- •15.2. Особенности выбора и проверки сечений в разомкнутых и простых замкнутых сетях
- •Задания для самостоятельной работы:
- •16.1. Показатели качества электроэнергии (ээ) в задачах ее передачи и распределения
- •16.2. Балансы активной и реактивной мощности в энергосистеме и их влияние на показатели качества ээ
- •Баланс реактивной мощности и его связь с напряжением
- •16.3. Последствия нарушения качества электроэнергии
- •Задания для самостоятельной работы:
- •Литература
9.1. Схема соединения обмоток автотрансформатора
Основное отличие АТ и Т заключается в следующем:
в трансформаторе первичная обмотка со вторичной обмоткой имеет только магнитную связь;
в АТ между обмотками ОА ОС осуществляется электрическая связь
Эл. связанные обмотки АО и СО. Часть обмотки между выводами АО называется последовательной, а между выводами СО называется общей.
Последовательная и общая обмотки имеют между собой как магнитную, так и электрическую связь. Обмотка низкого напряжения с двумя другими обмотками имеет только магнитная связь.
В АТ часть мощности передается непосредственно без трансформации, через контактную (электрическую) связь между последовательной и общей обмотками.
Токораспределение у АТ другое. Если мощность передается с ВНСН и с ВННН.
В понижающем АТ ток в общей обмотке (Iтр) определяется разностью токов, замыкающихся через сети ВН и СН. Эта обмотка рассчитывается на ток меньший Iном АТ, определяемого на стороне ВН.
АТ в каждой фазе имеет обмотку ОА-ВН, состоящую из общей обмотки ОС-СН и последовательной обмотки АС. Эти обмотки соединены между собой по автотрансформаторной схеме, т.е. электрически. Третья обмотка - третичная НН всегда соединена треугольником и имеет трансформаторную электромагнитную связь с обмоткой ОА (ВН), т.е. с общей (ОС) и последовательной (АС), что на схеме отражено.
При работе АТ в режиме понижения напряжения в последовательной обмотке проходит ток Iв, который создавая магнитный поток, наводит в общей обмотке ток I0. Ток нагрузки вторичной обмотки Iс складывается из тока Iв, проходящего благодаря гальванической (электрической) связи обмоток, и тока I0, созданного магнитной связью этих обмоток:
Iс= Iв+ I0, откуда I0+ Iс- Iв.
9.2. Схема замещения автотрансформатора
Для АТ справедлива схема замещения трехобмоточного трансформатора.
9.3. Особенности определения параметров и применение автотрансформаторов
АТ также как и трансформатор характеризуются номинальными напряжениями и мощностью.
Под номинальной мощностью АТ понимается предельная проходная мощность, которая может быть передана через АТ на стороне ВН:
Sном = 3 Iв. Uв
Мощность, которую АТ может принять из сети ВН или передать в эту сеть, называется проходной мощностью Sпрох, причем Sпрох= Sтр,+ Sэ,
Sтр - трансформаторная мощность;
Sэ - электрическая мощность.
Для характеристики АТ введено еще понятие типовой номинальной мощности Sт, на которую рассчитывается последовательная обмотка (АС).
Типовая, т.е. трансформаторная мощность АТ при номинальных условиях характеризует способность АТ передавать мощность магнитным путем. Она определяет габариты и стоимость АТ, а также расход материалов и мощность отдельных обмоток.
Для этой последовательной обмотки, протекающая по ней мощность определяется при отсутствии нагрузки НН.
Sт=Sном
-
коэффициент трансформации;
или
=
,
где=1-
;
-коэффициент выгодности;
k - коэффициент трансформации.
Т.о. типовая мощность характеризует мощность передаваемую электромагнитным путем, через обмотки, связанные электрически.
При использовании третичной обмотки (НН) в понижающих АТ для питания нагрузки (или для присоединения к ней генератора в повышающих АТ) предельная ее мощность равна типовой.
В понижающем АТ при передаче мощности с ВНСН и ВННН в общей обмотке ОС (СН) протекает разность токов Iв - Iс. Вследствие этого общая обмотка рассчитана на ток меньший номинального, и мощность этой обмотки равна его типовой мощности. (Sобщ.обм.=Sтип.)
Т.о. конструкция понижающего АТ делает возможным передачу мощности больше той, на которую рассчитываются его обмотки. Понижающие АТ поэтому дешевле трех обмоточных трансформаторов той же мощности и характеризуются меньшим расходом активных материалов на их изготовление и следовательно меньшими потерями активной мощности.
Преимущества
АТ проявляются в большей степени при
малых значениях
(коэффициент
выгодности), т.е. тогда, когда они связывают
сети более близких напряжений.
Sт=Sном;
.
АТ, как и трех обмоточные трансформаторы характеризуются потерями и токами ХХ (Рхх, I=Iхх) и тремя значениями напряжений КЗ.
Таблицы параметров АТ содержат при значения потерь КЗ, отвечающие трем опытам КЗ. Причем одно из них Ркз(в-с)= Ркз(1-2) приводятся отнесенными к номинальной мощности АТ, а два других Р’кз(в-н)= Р’кз(1-3) и Р’кз(с-н)= Р’кз(2-3) в ряде случаев указываются отнесенными к типовой мощности.
Эта особенность отвечает условиям осуществления опытов КЗ. При КЗ обмотки НН, рассчитанной на типовую мощность, напряжение поднимается до величины, определяющей в этой обмотке ток, соответствующий типовой, а не номинальной мощности.
При КЗ на стороне СН и подаче напряжения на ВН, это напряжение может подниматься до величины, при которой ток в последовательной обмотке достигнет значения, отвечающего номинальной мощности АТ.
Параметры ветви намагничивания определяются по формулам:
;
.
Также как и для трансформаторов реактивные сопротивления могут быть найдены по выражениям:
;
;
.
После вычисления по формулам:
;
НО только после приведения всех табличных значений напряжений КЗ к одной номинальной мощности АТ.
и
.
При определении активных сопротивлений все значения потерь КЗ (РКЗ) также должны быть приведены к номинальной мощности АТ:
и
;
Тогда
;
;
.
И аналогично выражениям для Х1, Х2, Х3:
;
;
.
Для вычисления потерь активной и реактивной мощностей в АТ можно выполнить расчет режима его схемы замещения. Можно также воспользоваться табличными значениями потерь КЗ (РКЗ) и напряжений КЗ (Uk%). В последнем случае искомые величины определяются формулами:
;
и
в которых табличные данные должны подставляться приведенными к номинальной мощности АТ.