- •Введение
- •1. Общие сведения об энергетических системах и электрических сетях. Классификация электрических сетей
- •2. Конструкции, назначение и основные характеристики электрооборудования лэп и пс
- •3. Режимы. Параметры режима и параметры сети. Схемы замещения
- •4. Схемы замещения лэп. Определение параметров схем замещения лэп
- •5. Характерные соотношения между параметрами лэп. Расчет режимов лэп при заданном токе и напряжении в конце линии. Векторные диаграммы
- •6. Падение и потеря напряжения в линии. Расчет режима лэп при заданной мощности нагрузки и напряжении в конце и начале линии
- •7. Схема замещения и параметры двухобмоточного трансформатора и трансформатора с расщепленной обмоткой низшего напряжения
- •8. Схема замещения и определение параметров трехобмоточного трансформатора
- •9. Схемы замещения и определение параметров автотрансформатора
- •10. Расчеты режимов электрических сетей. Расчетные схемы для разомкнутых и замкнутых электрических сетей. Понятие расчетной нагрузки
- •11. Расчет режимов электрических сетей с n-нагрузками. Расчет режимов кольцевых сетей
- •12. Совместный расчет режима сетей с разными номинальными напряжениями
- •13. Балансы мощностей в электроэнергетической системе. Компенсация реактивной мощности
- •14. Методы регулирования напряжения. Встречное регулирование напряжения
- •15. Определение номинального напряжения проектируемой сети. Особенности выбора и проверки сечений в разомкнутых и простых замкнутых сетях
- •16. Качество электроэнергии и его связь с балансом мощности
- •1.1. Общие сведения об энергетических системах и электрических сетях
- •1.2. Основные технические задачи, проблемы передачи и распределения электроэнергии
- •1.3. Объединенные энергосистемы, их преимущества
- •Задания для самостоятельной работы:
- •1.4. Классификация электрических сетей
- •1.5. Обозначения и некоторые сведения об электрических величинах
- •Задания для самостоятельной работы:
- •2.1. Особенности эксплуатации и начальные сведения о требованиях к выбору основных конструктивных элементов лэп, кл и оборудования подстанций
- •2.2. Конструкции и маркировка основных элементов лэп
- •2.3. Конструкции и маркировка кл
- •2.4. Виды силовых трансформаторов, автотрансформаторов и их условные обозначения
- •Задания для самостоятельной работы:
- •Режимы. Параметры режима и параметры сети
- •Понятие статической и динамической устойчивости
- •Схемы замещения. Продольные и поперечные ветви схем замещения
- •Линия электропередачи как элемент электрической сети
- •3.5. Погонные (удельные) параметры линий
- •Задания для самостоятельной работы:
- •Схемы замещений лэп для напряжений 35-220 кВ
- •Активное и реактивное сопротивления линий. Расщепление проводов
- •Активная и реактивная проводимости линий. Эффект «короны». Зарядная мощность линии
- •Схемы замещений кл для напряжений 10-220 кВ
- •Задания для самостоятельной работы:
- •Характерные соотношения между параметрами лэп. Транспозиция проводов
- •Среднее значение проводимости для вл , выполненной одиночными проводами во ср2,7510-6 См/км.
- •Расчет режима лэп при заданном токе нагрузки и напряжении в конце линии
- •Векторная диаграмма для расчета режима лэп при заданном токе нагрузки и напряжении в конце линии для линии с нагрузкой
- •Векторная диаграмма для расчета режима лэп при заданном токе нагрузки и напряжении в конце линии для линии в режиме холостого хода
- •Задания для самостоятельной работы:
- •Падение и потеря напряжения в линии. Продольная и поперечная составляющие падения напряжения
- •6.2. Расчет режима лэп при заданной мощности нагрузки и напряжении в конце линии
- •6.3. Расчет режима лэп при заданной мощности нагрузки и напряжении в начале линии: использование нелинейного уравнения узловых напряжений
- •6.4. Расчет режима лэп при заданной мощности нагрузки и напряжении в начале линии: использование приближенного расчета в два этапа
- •Задания для самостоятельной работы:
- •7.1. Схема замещения двухобмоточного трансформатора
- •7.2. Опыт холостого хода для двухобмоточного трансформатора
- •7.3. Опыт короткого замыкания для двухобмоточного трансформатора
- •7.4. Определение потерь в двухобмоточных трансформаторах
- •7.5. Схема замещения и параметры трансформатора с расщепленной обмоткой низшего напряжения
- •Задания для самостоятельной работы:
- •8.1. Схема замещения трехобмоточного трансформатора. Параметры
- •8.2. Виды исполнений трехобмоточного трансформатора
- •8.3. Определение потерь в трехобмоточных трансформаторах
- •9.1. Схема соединения обмоток автотрансформатора
- •9.2. Схема замещения автотрансформатора
- •9.3. Особенности определения параметров и применение автотрансформаторов
- •Автотрансформаторы
- •Задания для самостоятельной работы:
- •10.1. Расчеты режимов электропередачи электрических сетей
- •Расчеты режимов электрических сетей.
- •Практическое применение нашли два основных метода расчета:
- •10.2. Расчетные схемы для разомкнутых и замкнутых электрических сетей
- •10.3. Понятие расчетной нагрузки
- •10.4. Определение потерь электроэнергии в лэп и в электрических сетях Вычисление расчетной мощности подстанции предшествует расчету режима сети
- •11.1. Расчет режимов электрических сетей с n-нагрузками «по данным конца»
- •11.2. Расчет режимов электрических сетей с n-нагрузками «по данным начала»
- •11.3. Расчеты установившихся режимов линий с двухсторонним питанием и замкнутых сетей простейшей конфигурации
- •Задания для самостоятельной работы:
- •12.1. Особенности совместного расчета режима участков сетей с разными номинальными напряжениями
- •12.2. Определение напряжения на стороне низшего напряжения подстанции
- •12.3. Расчеты режима линий с двусторонним питанием при различающихся напряжениях источников питания (по концам)
- •Послеаварийные режимы
- •Задания для самостоятельной работы:
- •13.1. Балансы мощностей в электроэнергетической системе
- •13.2. Источники реактивной мощности в ээс. Основные современные типы компенсирующих устройств
- •13.2.1 Синхронные компенсаторы
- •Величина эдс Eq определяется величиной тока возбуждения. Росту тока возбуждения соответсвует увеличение эдс Eq.
- •13.2. Батареи конденсаторов
- •13.3. Выбор мощности ку в задачах регулирования напряжений
- •13.4. Влияние ку на режимы электрических сетей
- •14.1. Основные методы и способы регулирования напряжения в ээс
- •14.2. Сравнение способов регулирования напряжения
- •14.3. Регулирование напряжения трансформаторов под нагрузкой
- •14.4. Встречное регулирование напряжения
- •Задания для самостоятельной работы:
- •15.2. Особенности выбора и проверки сечений в разомкнутых и простых замкнутых сетях
- •Задания для самостоятельной работы:
- •16.1. Показатели качества электроэнергии (ээ) в задачах ее передачи и распределения
- •16.2. Балансы активной и реактивной мощности в энергосистеме и их влияние на показатели качества ээ
- •Баланс реактивной мощности и его связь с напряжением
- •16.3. Последствия нарушения качества электроэнергии
- •Задания для самостоятельной работы:
- •Литература
Векторная диаграмма для расчета режима лэп при заданном токе нагрузки и напряжении в конце линии для линии с нагрузкой
Векторная диаграмма токов и напряжений строится в соответствии с выражениями 1-5.

Вначале строим известные U2ф и I2.
Полагаем что U2ф=U2ф, т.е. напряжение U2ф направлено по действительной оси.
Емкостный
ток
опережает на 90о
напряжение U2ф.
Ток I12
соединяет начало первого и конец второго
суммируеммых векторов в правой части
урав.(2) [I12=I2+
]
Затем строим отдельно два слагаемых в правой части (3) [U1ф=U2ф+I12Z12].
I12Z12=I12r12+I12jx12 (7)
Вектор I12r12 I12, вектор I12jx12 опережает на 90о ток I12
Напряжение U1ф соединяет начало и конец суммируемых векторов U2ф, I12r12, I12jx12.
Ток
опережаетU1ф
на 90о.
I1
соответствует (5) I1=I12+![]()
В линии с нагрузкой напряжение в конце линии по модулю меньше, чем в начале U2ф<U1ф.
Векторная диаграмма для расчета режима лэп при заданном токе нагрузки и напряжении в конце линии для линии в режиме холостого хода
Вначале строим известные U2ф и I2.
Полагаем что U2ф=U2ф, т.е. напряжение U2ф направлено по действительной оси.
В линии на холостом ходу (I2=0), течет только емкостной ток, т.к. в соответствии с формулой I12=I2+Iкс12 (2) I12=Iкс12
Емкостный
ток
опережает на 90о
напряжение U2ф.
Затем строим отдельно два слагаемых в правой части (3) [U1ф=U2ф+I12Z12], учитывая, что I12=Iкс12.
I12Z12=I12r12+I12jx12 (7)
Вектор I12r12 I12, вектор I12jx12 опережает на 90о ток I12
Напряжение U1ф соединяет начало и конец суммируемых векторов U2ф, I12r12, I12jx12.
Ток
опережаетU1ф
на 90о.
I1
соответствует (5) I1=I12+![]()
В этом случае напряжение в конце линии повышается U2ф>U1ф
Векторная диаграмма для такой линии:

Задания для самостоятельной работы:
1. Расчет режима ЛЭП при заданном токе нагрузки и напряжении в начале линии.
2. Анализ режимов ЛЭП в зависимости от соотношений параметров их схем замещения, режимов передачи активной и реактивной мощности, рабочих напряжений в начале и в конце линий.
Лекция 6. Падение и потеря напряжения в линии. Расчет режима ЛЭП при заданной мощности нагрузки и напряжении в конце и начале линии.
Падение и потеря напряжения в линии. Продольная и поперечная составляющие падения напряжения
Различие в напряжениях U2ф и U1ф в П-образной схеме определяется падением напряжения на сопротивлении Z12 (Z12+jx12), вызванным током I12. Определяется это падением напряжения как сумма вектора I12r12, совпадающего по фазе с вектором I12 и вектора I12jx12, опережающего вектор I12 на 90о.
П
адение
напряжения
– геометрическая (векторная) разность
между комплексами напряжений начала и
конца линий.
На
рис. падение напряжения это вектор
,
т.е.![]()
разность комплексных значений по концам линий, используется для характеристики режима линии.
Продольной составляющей падения напряжения Uк12 называют проекцию падения напряжения на действительную ось или на напряжение U2, Uк12=АС. Индекс “к” означает , что Uк12 – проекция на напряжение конца линии U2.
Обычно Uк12 выражается через данные в конце линии: U2, Pк12, Qк12.
Поперечная
составляющая падения
напряжения Uк12
– это проекция падения напряжения на
мнимую ось, jUк12=СВ.
Т. о. U1-U2=
I12Z12=Uк12+jUк12.
Величина Uк12 определяет сдвиг вектора напряжения в начале линии (U1) на угол по отношению к вектору напряжения в ее конце (U2).
Часто используют понятие потеря напряжения – это алгебраическая разность между модулями напряжений начала (U1) и конца (U2) линий.
На рис. U1– U2=АД.
Если поперечная составляющая Uк12 мала (например, в сетях Uном 110кВ), то можно приближенно считать, что потеря напряжения равна продольной составляющей падения напряжения.
Потеря напряжения является показателем изменения относительных условий работы потребителей в начале и в конце линии.
