International Journal for Numerical Nlethods in Engineering 33, 1237-1249. (2)
References
429
Rivlin, R.S. [1949~], Large elastic deformations of .isotropic materials. VI. Further results in the theory of torsion, shear and flexure, Philosophical Transactions of the Royal Society Qf Londmz A242, .173-1.95. (6)
Rivlin, R.S. I1970], An introduction to non-linear continuum mechanics, in: R.S. Rivlin~ ed.,
No11 .../i11ear Continuum Theories in Mee/zanies and Physics and their Applications, Edi..
zioni Cremonese., Rome., 15:1-309. (6)
Rivlin, R.S.., and Ericksen, 1.L [.1955]., Stress-deformation relations for isotropic materiaJs,
Journal of Rational Mechanics .amt Am1/ysis 4, 323--425. Reprinted in Rational :Me.. dmnics of Materials. International Science Review Series, New York: Gordon & Breach
[ 1965]. (5)
Rivlin, R.S., and Suunders, D.W. .(195 l], Large elastic deformations of isotropic materials. VU. Experiments on the deformation of rubber, Philosophical 7hmsactions of the Royal
Society f~{London A243, 251-288. (2)
Rosen, M.R. [.1979], Characterization of non..Newtonian llow, Polymer Plastics Technology
and Engineering 12, 1-42. (7)
Roy, C.S. [1880-l882], The elastic properties of the arterial wal.1, The .Journal of Physiology 3,
125-159. (7)
Sa1ecb, .A.F., Chang, T. Y.P., and Arnold, s.·M. f1992], On the development of exlicit robust schemes for implementation of a class of hyperelastic models in large-strainanalysis of rubbers,
Scan.Ian, J. [J 960], The effect of network flaws on the elastic properties of vulcanizates. Jou ma/
Schroder, J. '[.199.6], Theoretische und algorithmische Konzeptc zur phanomenologischen Bcschreibung anisotropen Materialverhaltens, Technischer .Bericht F 96/3, Forscbungsund Seminarbe.richte aus dem Bereich dcr Mechanik der Universitat .Hannover. (6)
Schur, t [1968], Vorlesungen iiber lnvariantenlheorie~ in: H. Grunsky.. ed., Die Grundlelzren der m.arhematischen Wissenscluiften, Volu.me 143, .Springer~Verlag, Herl.in. (6)
Schweizerho:f, K.H., and Ramm, E. [1984], Displacement dependent pressure loads in :nonlinear finite element analysis, Computers .and Structures 18, I099-1114. (8)
Seki, W.., Fukahori, Y., Iseda, Y., .and Malsunaga, T. '( 1987], A .Jarge-defonnationfinite-element analysis for multilayer elastomeric bearings, Rubber Chemistry and Technology 60, .85~
869. (6)
in Applied Mechanics
430
References.
Seth, B.R. [1964],
Generalized strain measure with applications to physical problems, in.:
M. Reiner, and D. Abir, eds.., Second-Order Ejfects in Elasticity, Plasticity. and Fluid Dynamics, Pergamon Press, Oxford, 162-172. (2)
Shen, M., and Croucher, M. [1975], Contribution of internal energy to the .elasticity of rub- berlike materials, .Journal of Macromolecular Science C - Reviews in Macromolecular Chemistry 12, 287-329.(7)
Sidoroff, F. [1974], Un modcle viscoelastique non lincaire .avec configuration intcrmediaire,
Joumal de Mecanique 13, 679-713. (6)
SHhavy, M. [1997], The Meclumics and Thermodynamics of Continuous Media .. SpringerVerlag, New York. (4,6, 7)
Simmonds, J.G. [.1994], A Brief 011 Tensor Analysis, 2nd ~dn., Springer-Verlag, New York. (1)
Simo, J.C. [.1987], On a fully three-dimensionalfinite-strain viscoelastic damage model: For- mulation and computational aspects, Computer Met/rods iTZ Applied Mechanics am/ Engineering 60, 153-173. (6,8)
Simo, J~C., and Hughes, T.J.R. [1998]~ Computatio11al lnelasticity, .Springer-Verlag, New
York. (6)
Simo, J.C., and Miehe, C. I 1992], Associative ·Coupled thcrmop"lasticity at finite strains: Formu..
.lation, numerical analysis and implementation, Computer Methods and Engineering 98, 41-104. (6,7)
.Simo, J.C., and Taylor, R.L. I.199"1a], Quasi-incompressiblefinite elasticity in principal stretches. Continuum basis and numerical algorithms, Compmer Methods in Applied Mechanics and Engineering -.ss,273-310. (2,6,8)
Simo, J.C., Tay1or, R.L., and Pister, K.S. f 1985], Variational and projection methods for the volume constraint in finite deformation elasto..plasticity, Complller Methods in Applied
.Mechanics and Engineering 51, 177-208. (6,8)
Simo, J.C., Taylor, R.L., and Wriggers, P. [1991 b], A note on finite~element implementation of pressure boundary loading, Communications in Applied Numerical Methods 7, 513-
525. (8)
Simon, .B.R., Kaufmann, .M.V., McAfec, ·M..A., and Baldwin, A.L. [1993], Finite element models for arterial wall mechanics, A.SME Journal of Biomeclzarzical Engineering 115, 489- 496. (6)
S·ircar, A.K., and Wells, J.L. ["I 981 ], Thermal conductivity of elastomer vulcanizates by differential scanning calorimetry, Rubber Chemistry and Teclmology SS, 191-207.(7)
So, H., and Chen, U.D. .[l.991 ], A nonlinear mechanical model for solid-filled rubbers, Polymer
Engineerillg and Science 31, 410-4"16. (6)
References
431
de Souza Neto, E.A., Perie, D., and Owen, D.R.J. .[1994]., A phenomenological thrcedimensiona1 rate-independent continuum damage model for highly .filled .polymers: ·Formulation and computational aspects, Journal of the Mechanics and Physics of Solids 42,
1533-1550. (6)
de.Souza Neto, E.A., Perie, D., and Owen, D.R.J. [1998], Continuum modelling .and numerical simulation of materia.1 damage al finite strains, Archives of Computatio11al .Methods in
Engineering 5, 3:11-384. (6)
Spencer, A.J.M. [197:1 ], Theory of invariants, in: A.C. Eringen, ed., Continuum Physics, Volume I, Academic Press, New York. (6)
Spencer, A.J.M. [1984], Constitutive theory for strongly anisotropic solids, in: AJ..M. Spencer~ ed., Continuum Theory ofthe Mechanic..\· of Fibre-Reinforced Composites, CISM Courses and Lectures No. 282, International Centre for Mechanical Sciences., Springer-Verlag,
Wien, 1-32. (~)
Sperling, L.H. [.1992], flltroduction to Physical Polymer.Science, 2nd edn., John Wiley & Sons, New York. (6,7)
Strang, G. [1988a], Linear Algebra and its Applications, 3rd cdn., Saunders Harcourt .Brace Jovanovich.• San Diego. (I)
Strang, G., and Fix, G.J. [I 988b], An Analysis of the Finite Elemelll Method, Wcllesley-
Cambridge Press, Wellesley. (8)
Sullivan, J.L. [1986]., The relaxation and deformational properties of a carbon-black filled elastomer in biaxial lens.ion, Joumal ofApplied Polymer Science 24, 161-173. (6)
Sussman, T., and Bathe, K.-J. [ 1987], A finite e-lement formulation for nonlinear inco~pressible elastic and inelastic analysis, Computer.r a11d Structures 26, 357-409. (6,8)
Taylor, R.L., Pister, .K.S., and Goudreau, G.L. [1970], Thermomcchanical ana.lysis of viscocla'i- tic solids, ltztematitmal Journal for Numerical Methods in Engineering 2, 45~59. (6)
Ting, T.T. [1985), Determination of C 112, c-1/2 and more general isotropic tensor functions of
C, .Journal .ofEla.vticity 15, 3 I9~323. (.2)
Tobolsky, A.V.. [.1960], Properties and Structure of Polymers, John WHey & Sons, New York. (7)
Tobolsky, A.V., Prettyman, I.B., and Dillon, J.H.. [I 944], Stress relaxation of natural and syn- thetic rubber stocks, Journal ofApplied Phy.-;ics15~ 380-3.95. (7)
432 References
Treloar, L.R.-0. [ l 943a], The elasticily of a network of long-chain molecules -
I, Transactlons
of the Faraday Society 39, 36--4.1.(6,7)
Treloar, L.R.G. [1.943b]., The elasticity .of a network nf long-chain molecules -
II, .Transactions
ofthe Faraday Society 39, 241-246. (6,7)
Trcfoar, L.R.G. .[1944], Stress,..strain data for vulcanized rubber under various types ·Of deformation, Transactions ofthe .Faraday Society 40, 59-70. (6)
Tre:Joar, L.. R.G. [1954], The photoelastic properties of short-chain mo"lccular networks, .Trans- actions of"the Faraday Society 50, 881-896. (6)
Treloar, L.R.G. [I 975], The Physics of Rubber Elasticity, 3rd edn., Oxford University Press, Oxford. (2.-6,7)
Treloar, L.R.G. [1976], The mechanics of rubber elasticity, .Proceedings of the Royal SodetJ' of London A351, 30.1-330.{6)
Truesdell, C. [1977], A First Course :in Ration.al Continuum Mechanics, Volume .I, Academic
Pre~s, New York. (2)
Truesdell, C. [1980], The Tragicomical History of Thermodynamics 1822-1854, Studies in the
History of Mathematics and Physical Sciences 4, Springer-Verlag, New York. (7)
Truesdell, C. [1984]t Rational .Thermodynamics, .2nd .edn., Springer-Verlag, New York. {6)
Truesdell, C., and Noll, W. [1992], The non-linear field theories
of mechanics, 2nd
edn.,
Springer-Verlag.,Berlin. (1,2,3,5,6)
Truesdell., C., .and Toupin, R.A. [.1960], The classical field theories,
in: S. Fliigge, ed.,
Ency..
clopedia of Physics, Volume II.1/.1, Springer-Verlag, Berlin, 226-793. {4,6~7f8)
Tsai, S.W., and Hahn, H.T. f1980], lmroduction to Composite lvlateriafs, Technomic Publishing
Company, Lancaster. (6)
Twizell, E.H., and Ogden, R.W. [l 983], Non..Jinear optimization of the material constants i.n Ogden's stress-deformation function for incompressible isotropic elastic materials, Jour- nal of the Australian Matltema.tica/ Society B24, 424-434. (6)
Vainberg, M.M. [1964], Vttriational A-fethodsfor the Study of Nonlinear Operators, Holden.. Day, San Francisco. (8)
Valanis, K.C. [1972], Irreversible Themwdynamics of Continuous Media, Internal Variable
Them)', CISM Courses and Lectures No.. 77, .International Centre for Mechanical Sciences, Sp.ringer-Verlag,Wien. (6)
Valanis, K.C., and Landel, R.F. [1967], The strain-energy function of a hyperelastic material in letms of the extension ratios, Journal of Applied Physics 38, 2997-3002. (6,7)
van den Bogert, P.A.J., de Borst, R., Luilen, G.T., and Zei1maker, J . .[ 1991 ], Robust finite efe.. ments for 3D-analysis .of rubber-like materials, Engineering Computations 8, 3-.17. (8)
) {
References ·• /1'.fi';;i/Jj\'m:~~~
Va(ga, O.H. [1966], Stress-,~train behavior of elastic materials, Selected probt~1;is":f.;/fa/g~=/fj~~=:
formations, Wiley - foterscience, New York. (6)
· :. ..:-:.-_-.:: :.><::-._.:
......:":/<:·\:"./.:
. . .
. .... ··:.·:···.··
.
. . ·.:
·.·.·.:··::·.
Wall, F.T. [1965), Chemical T/iennodynamics, 2nd edn., Freeman, San Francisco. (7)
...
. . . . .
Wang, C.-C., and Truesdell, C. [1973],
Introduction to Rational Elastit'ity, Noordhoff, ·Ley~
den.(2)
..
Ward, l.M.., and Hadley, D.W. [1993], An Introduction to tlze Meclumical Properties of Solid Polymers, John Wiley & Sons, New York. (6,7)
Washizu, K. .[ 1955], On the variational principles of elasticity and plasticity~ Technical Re· porl No. 25-18, Aeroelastic and Structures Research Laboratory, MIT, Cambridge, Massachusetts. (8)
Washizu, K. [1982], Variational Methods in Elasticity and Plasticity, 3rd cdn., Pergamon Press,
Oxford. (8)
Weiner, J.H. [1983]., Statistical Mechanics of Elasticity, John Wiley & Sons, New York. (7)
Weiss, J.A., Maker, B.N., and Govindjee, S. -[1996], Finite element implementation of incompressible, transversely isotropic hyperelasticity, Computer Methods in Applied Mechanics
.and Engineering 135, 107-128. (6)
Wilmariski, K. [1998]t Thermomeclzanics of Continua, Springer-Verlag, Berlin. (4)
Wood, L.A., and Martin, G.M. [ l.964], Compressibil.ity of natural rubber at pressures .below
500 kg/cm2 , JoumaI of Research of the National Bureau ofStandards 68A, 259-268. (7)
Wri.ggers, P. .[1988], Konsistente Linearisierung in der Kontinuumsmechanik und ihre Anwendung auf die Finite-E1ement-Melhode, Technischer Bericht F 88/4, Forschungsund Seminarberichte aus dem Bereich der Mechan.ik der Universitiit Hannover. (2,8)
Yanenko, N.N. [1.971]., The Method of Fractional Steps, Springer-Verlag, New York. English translalion edited by ·M. Holt. (7)
Zhen.g., Q.-S. [1994], Theory of representations for tensor functions - a unified invariant approach to constitutive equations, Applied Mecha11ics Revie1vs 41, 545-587. (6)
Ziegler, H. [1983], An Introduction to Thermomechanics, Norlh-HoHand, Amsterdam. {7)
Zienkiewicz, 0.C., and Tay1or, R.L. [198.9], The Finite Element Method. Basic Formulation and Linear Problems, Volume 1, 4th edn., McGraw-Hill, .London. (8)
Zienkiewicz, O.C.., and Taylor, R.L. "[ 199.1 ], .The Finite Elemem Method. Solid and Fluid Meclumics, Dynamics and Nonlinearity, Volume 2, 4th edn.t McGraw-Hill, London. (8)