
- •Содержание:
- •1. Введение 3
- •2. Обоснование выбора площадки для тэц и её компоновки 4
- •3. Выбор главной схемы электрических соединений тэц 6
- •1.Определим частоту отказов выключателей 35 кВ. Согласно [1, стр.489, табл. 8.9], воздушный выключатель на 35 кВ обладает следующими параметрами: 33
- •2. Обоснование выбора площадки для тэц и её компоновки
- •Условные обозначения на плане тэц.
- •3. Выбор главной схемы электрических соединений тэц
- •1.Выбор схемы присоединения электростанции к электроэнергетической системе
- •3.1. Структурная схема
- •3.2. Характеристика схемы присоединения электростанции к электроэнергетической системе
- •3.3. Формирование вариантов структурной схемы тэц
- •3.4. Выбор количества, типа и мощности трансформаторов и автотрансформаторов структурных схем
- •3.4.1. Первый вариант
- •3.4.1.1. Осенне-зимний период
- •3.4.1.2. Весенне-летний период
- •3.4.1.3. Выбор трансформаторов
- •3.4.2. Второй вариант
- •3.4.3. Третий вариант
- •3.4.4. Выбор источников питания собственных нужд
- •3.4.4 Выбор трансформаторов собственных нужд.
- •3.5. Технико-экономическое сравнение вариантов структурной схемы тэц
- •3.5.1. Расчёт капиталовложений
- •3.5.2. Расчёт ежегодных расходов
- •3.5.3. Расчёт составляющей ущерба из-за отказа основного оборудования
- •3.5.4. Определение оптимального варианта структурной схемы тэц
- •3.6. Выбор схем распределительных устройств тэц с учётом ущерба от перерыва в электроснабжении и потери генерирующей мощности
- •3.6.1. Выбор схемы ру 35 кВ
- •3.6.2. Выбор схемы ру 110 кВ
- •3.6.3. Выбор схемы гру 10 кВ
- •4. Расчёт токов короткого замыкания
- •4.1. Постановка задачи (цель и объём расчёта, вид кз)
- •4.2. Составление расчётной схемы сети
- •4.3. Составление схемы замещения
- •4.4. Расчёт параметров токов короткого замыкания (Iп0, Iпτ, iу, iаτ) для точки k-1
- •4.5. Расчёт параметров токов короткого замыкания для последующих точек кз
- •4.6. Составление сводной таблицы результатов расчёта токов короткого замыкания
- •5. Выбор электрических аппаратов и проводников
- •5.1. Выбор выключателей и разъединителей на 110 кВ.
- •5.2 Выбор выключателей и разъединителей на 35 кВ
- •5.3. Выбор выключателей и разъединителей генераторного напряжения.
- •5.4 Выбор токоведущих частей
- •5.4.1 Выбор шин 110 кВ.
- •5.4.2.Выбор гибких токопроводов от выводов 110 кВдо сборных шин.
- •5.4.3. Выбор комплектного токопровода.
- •5.4.4. Выбор шин 35 кВ.
- •5.4.5.Выбор гибких токопроводов от выводов 35 кВдо сборных шин.
- •5.5. Выбор трансформаторов тока и напряжения.
- •5.5.1. Выбор трансформаторов напряжения.
- •5.5.2. Выбор трансформаторов тока.
- •6. Выбор схемы собственных нужд тэц
- •6.1. Характеристика систем потребителей собственных нужд тэц
- •6.2. Выбор схемы рабочего и резервного питания собственных нужд
- •6.3. Выбор количества и мощности источников рабочего и резервного питания собственных нужд
- •7. Выбор установок оперативного тока.
- •Заключение
- •Разработали схему питания собственных нужд. Для этого определяли количества и мощности источников рабочего и резервного питания собственных нужд.
- •Библиографический список
3.6.2. Выбор схемы ру 110 кВ
Согласно структурной схеме применяем двойную несекционированную систему сборных шин с обходной. Количество присоединений на ОРУ 110 кВ равно 4.
Рис. 16. Выбранная схема ОРУ 110 кВ (две рабочие системы шин с обходной)
3.6.3. Выбор схемы гру 10 кВ
На ГРУ применяем одинарную систему сборных шин с секционированием.
Рис. 27. Выбранная схема ГРУ 10 кВ (одинарная система сборных шин секционированием)
4. Расчёт токов короткого замыкания
4.1. Постановка задачи (цель и объём расчёта, вид кз)
Для выбора электрооборудования, аппаратов, шин, кабелей, токоограничивающих реакторов и т. д., а также для выбора и проверки уставок релейной защиты и автоматики необходимо знать токи короткого замыкания. Коротким замыканием (КЗ) называют всякое непредусмотренное нормальными условиями работы замыкание между фазами, а в системах с заземленными нейтралями – также замыкание одной или нескольких фаз на землю (или на нулевой провод).
КЗ возникают при нарушении изоляции электрических цепей. Протекание токов КЗ приводит к увеличению потерь электроэнергии в проводниках и контактах, что вызывает их повышенный нагрев. Проводники и контакты должны быть термически стойкими, то есть без повреждений переносить в течение заданного времени нагрев токами КЗ. Протекание токов КЗ сопровождается также значительными электродинамическими усилиями между проводниками. Токоведущие части, аппараты и электрические машины должны быть сконструированы так, чтобы выдержать без повреждений усилия, возникающие при протекании токов КЗ, то есть обладать электродинамической стойкостью. Для обеспечения надежной работы и предотвращения повреждения оборудования при КЗ необходимо быстро отключать поврежденный участок.
В соответствии с [18] в качестве расчетного вида короткого замыкания следует принимать:
для определения электродинамической стойкости аппаратов и жестких шин с относящимися к ним поддерживающими и опорными конструкциями – трехфазное КЗ;
для определения термической стойкости аппаратов и проводников – трехфазное КЗ;
для выбора аппаратов по коммутационной способности – по большему из значений токов, получаемых для случаев трехфазного и однофазного КЗ на землю.
Стоит отметить, что в реальности ток двухфазного короткого замыкания на землю или ток однофазного короткого замыкания могут оказаться больше тока трехфазного короткого замыкания. Для проверки на коммутационную способность выбирают значение тока однофазного, двухфазного на землю или трехфазного короткого замыкания (в зависимости от того, какой ток больше). Для уменьшения токов однофазного короткого замыкания используется ряд мероприятий, таких как разземление нейтралей трансформаторов или установка дополнительных сопротивлений в нейтрали (то есть увеличение результирующего сопротивления схемы замещения нулевой последовательности). В данном курсовом проекте принимается, что данных мероприятий достаточно для того, чтобы ток однофазного короткого замыкания оказался меньше, тока трехфазного короткого замыкания. Ток двухфазного короткого замыкания не определяется по указанию преподавателя.
Поэтому достаточно определить ток трехфазного короткого замыкания в месте повреждения, а в некоторых случаях – распределение токов в ветвях схемы, непосредственно примыкающих к этому месту. При расчете определяют периодическую составляющую тока КЗ для наиболее тяжелого режима работы сети. Учет апериодической составляющей производят приближенно, допуская при этом, что она имеет максимальное значение в рассматриваемой фазе.
Расчет токов при трехфазном КЗ выполняют в следующем порядке:
для рассматриваемой установки составляют расчетную схему;
по расчетной схеме составляют электрическую схему замещения;
путем постепенного преобразования приводят схему замещения к простому виду – так, чтобы каждый источник питания или группа источников с результирующей ЭДС были связаны с точкой КЗ одним сопротивлением
;
определяют начальное значение периодической составляющей тока КЗ
, затем ударный ток КЗ
и при необходимости – периодическую и апериодическую составляющие тока КЗ для заданного момента времени
.