
- •Введение
- •Дискретная математика
- •Бинарная операция ассоциативна, если тождественно выполняется: ;
- •4.Классы булевых функций :
- •X1 x2 X
- •5. Теория полноты
- •I этап :
- •3 Случай :
- •II этап :
- •1); 2); 3); 4).
- •1) ; 2); 3);
- •4) ; 5);
- •5.4. Полные системы в классах т0, т1, м, s, l.
- •5.5 Базисы в классах t0 , t1, s, m, l Все полные системы для классов t0, t1, s, m, l в утверждениях выше являются базисами для этих систем.
- •6 .Минимизация булевых функций
- •1 Этап:
- •2 Этап:
- •Достаточно ясна связь задачи нахождения тупиковых покрытий и минимизации функции покрытия.
- •7. Исчисления высказываний
- •8. Семь теорем
- •Доказательство полноты исчисления высказываний.
- •Представление графов
- •1. Задание графа с помощью матрицы смежности.
- •2. Задание графа с помощью матрицы инцидентности.
- •3. Задание графа с помощью списка смежности.
- •Связные графы
- •Алгоритмы нахождения компонент связности
- •1. Поиск в ширину
- •2. Поиск в глубину
- •Укладки графов
- •Теорема Эйлера
- •Критерий Понтрягина-Куратовского
- •Раскраски графов
- •Основные понятия комбинаторики.
- •1 1.2 Упорядоченные наборы элементов изn-данных
- •1.3 Неупорядоченные наборы элементов изданных без повторений.
- •1.4 Неупорядоченные наборы элементов изп данных с возможными повторениями.
- •2 Метод включения-исключения.
- •Упражнения.
- •3 Метод производящих функций
- •1324 0100.
- •4 Основы теории перечисления Пойа. Лемма Бернсайда.
- •Упражнения.
- •Глава. Основы схем из функциональных элементов.
- •1) Мультиплексор порядка
- •2) Дешифратор порядка .
- •3) Универсальный многополюсник.
- •Глава. Введение в теорию конечных автоматов.
- •Глава. Введение в теорию кодирования.
- •Теория кодирования.
2 Метод включения-исключения.
Пусть
имеется множество элементов
и пусть имеется множество свойств
,
которыми элементы
могут
обладать или нет. Пусть
—
число элементов, обладающих свойствами
.
Пусть
обозначает
число
элементов,
обладающих ровно
свойствами.
Теорема.
=
Доказательство.
1.
Рассмотрим элемент
обладающий
ровно
свойствами. Такой элемент войдет в
только при
и в сумме
будет
считаться
единственный раз. Поэтому элементы,
обладающие
ровно
свойствами, будут входить в сумму по
одному разу.
2.
Рассмотрим элементобладающий ровно
свойствами,
.Тогда
в
они
будут входить при
а в
они войдут
раз. Тогда общее число вхождений такого
элемента
есть
Таким образом, из 1 и 2 следует требуемое свойство.
Пример
1.
Подсчитать число перестановок, оставляющих
на месте ровно
элементов.
Решение.
Вводим множество всех перестановок
элементов
.
Вводимn
свойств
:
-тый
элемент при перестановке
остается
на месте. Тогда число перестановок,
оставляющих на месте ровно
элементов, есть:
где
N()
— число перестановок, оставляющих на
месте
-ый,
-ой,…,
-ый
элементы, и это число есть очевидно,(n-k)!,
а число слагаемых в сумме
есть
.
Поэтому
искомое
число есть
Здесь
И
при больших
получим ассимтотическую формулу
Пример
2.
Найти число чисел взаимно простых с
данным
.
Обозначим это число через
(так называемая функция Эйлера).
Решение.
Введем множество натуральных чисел 1,
2,..., т
и
введем
свойства
,
где
означает, что число делится на простое
число
.
Тогда числа взаимно простые с т
есть числа, которые не обладают ни одним
из свойств
,
т.е. обладают 0 свойствами, и поэтому
искомое число есть
где
есть
число чисел, делящихся
на
,
и поэтому это числа, представленные в
виде
где
множитель h
изменяется 1,2,Поэтому
=
и
тогда
=
=
Пример
3.
Найти число способов раскладки m
различных шаров по n
различным урнам, при которых ровно
урн пусты.
Решение.
Введем множество различных раскладок
m
различных шаров по n
различным
урнам, т.е. упорядоченных наборов m
элементов из множества {1,2,..., n}
n-элементов
с возможными повторениями. Введем
свойства раскладок.
—i-ая
урна пуста. Тогда искомое число есть
—
ровно
урн
пусты.
— число
раскладок, при которых
ая,
ая,
ая
урны пусты и это число, как нетрудно
видеть, есть
.
Поэтому
Упражнения.
1.
Имеется колода карт четырех мастей по
n
карт
каждой масти. Берут
карт. Найти число комбинаций, в которых
имеются все масти.
2.
Бросают
различных игральных кубиков.
Найти
число комбинаций, когда имеются все
цифры.
3.
Найти число квадратных двоичных матриц
размера nn,
в каждой строке которых содержится хотя
бы один ноль.
4.
Найти число двоичных матриц размера
n
в строках, которых содержатся все
двоичные слова длины m.
5. Составляют n-значные числа из цифр 1,2,3,4. Найти число чисел, в
которых имеются все цифры.
3 Метод производящих функций
Пусть
имеется некоторая последовательность
целых положительных чисел:
Производящей
функцией
последовательности
называют
формальный
ряд
Пример
1.
Рассмотрим последовательность
где
—
число неупорядоченных наборов без
повторений i
элементов из n
имеющихся.
Тогда
но,
с другой стороны, рассмотрим функцию
и рас-
кроем
в ней скобки, тогда коэффициент при
есть число выборовi
скобок
из n
имеющихся,
в которых брали t,
а в остальных
1.
Таким
образом,
=
Тогда
Пример
2.
Производящая функция последовательности
неупорядоченных наборов с повторениями
где
—
число неупорядоченных наборов с
возможными повторениями i
элементов из п
имеющихся,
Но, с другой стороны, рассмотрим функцию
и
раскроем в ней скобки, тогда коэффициент
при
равен числу решений уравнения
в
целых числах, что и является числом.
Поэтому
=
Пример
3.
Производящая функция последовательности
неупорядоченных наборов i
элементов
из n
данных,
где только первый элемент может
повториться
раз
.
В частности производящая функция последовательности неупорядоченных наборов, где только первый элемент может повторяться, есть
=
.
Здесь во второй строке применена формула Лейбница для производной произведения.
Пример
4.
Производящая функция последовательности
перестановок из n
элементов
1,2,...
,п с
определенным числом инверсий
Вектором
инверсий
перестановки
называют
n
-компонентный
вектор, где i-ая
его компонента равна числу
чисел
больших i,
стоящих левее i
в
перестановке
.