Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на экз.вопр. по анатомии ЦНС и нейрофизиологии.docx
Скачиваний:
253
Добавлен:
24.03.2016
Размер:
143.57 Кб
Скачать

7 Вопрос

Нейроны

Нейроны являются возбудимыми клетками нервной системы. В отличие от глиальных клеток они способны возбуждаться (генерировать потенциалы действия) и проводить возбуждение. Нейроны высокоспециализированные клетки и в течение жизни не делятся. В нейроне выделяют тело (сому) и отростки. Сома нейрона имеет ядро и клеточные органоиды. Основной функцией сомы является осуществление метаболизма клетки.

Число отростков у нейронов различно, но по строению и выполняемой функции их делят на два типа. Одни — короткие, сильно ветвящиеся отростки, которые называются дендритами (от dendro — дерево, ветвь). Нервная клетка несет на себе от одного до множества дендритов. Основной функцией дендритов является сбор информации от множества других нейронов. Ребенок рождается с ограниченным числом дендритов (межнейронных связей), и увеличение массы мозга, которое происходит на этапах постнатального развития, реализуется за счет увеличения массы дендритов и глиальных элементов.

Другим типом отростков нервных клеток являются аксоны. Аксон в нейроне один и представляет собой более или менее длинный отросток, ветвящийся только на дальнем от сомы конце. Эти ветвления аксона называются аксонными терминалами (окончаниями). Место нейрона, от которого начинается аксон , имеет особое функциональное значение и называется аксонным холмиком. Здесь генерируется потенциал действия — специфический электрический ответ возбудившейся нервной клетки. Функцией же аксона является проведение нервного импульса к аксонным терминалям. По ходу аксона могут образовываться его ответвления — коллатерали. В месте отхождения коллатерали (бифуркации) импульс «дублируется» и распространяется как по основному ходу аксона, так и по коллатерали.

Часть аксонов центральной нервной системы покрывается специальным электроизолирующим веществом — миелином. Миелинизацию аксонов осуществляют клетки глии. В центральной нервной системе эту роль выполняют олигодендроциты, в периферической — Шванновские клетки.

8 Вопрос

Афферентные нервные волокна-чувствительные волокна, проводящие импульсы от периферии к центральной нервной системе; то же, что центростремительные нервные волокна.

Эфферентные нервные волокна-двигательные (моторные) волокна, передающие возбуждение от центральной нервной системы к рабочим органам; то же, что центробежные нервные волокна.

Афферентные и эфферентные нервные проводники

Основной функцией нервов является проведение сигналов к нервному центру от рецепторов (aфферентные проводники) или от нервного центра к эффектору(эфферентные проводники).

Собственно проводниками являются нервные волокна, входящие в состав периферических нервов или белого вещества головного и спинного мозга. Нервные волокна различаются толщиной (диаметром), наличием или отсутствием миелиновой оболочки, скоростью проведения возбуждения, длительностью потенциала действия, продолжительностью следовых потенциалов.

В соответствии с принятой классификацией нервные волокна делят на три класса: А, В и С. Волокна А и В классов являются миелинизированными, а С — немиелинизированными. К классу А относятся толстые миелиновые волокна толщиной от 3 до 22 мкм и обеспечивающие наибольшие скорости проведения возбуждения (от 12 до 120 м/с). В этот класс входят 4 группы волокон: альфа, бета, гамма и дельта, являющиеся как афферентными, так и эффе¬рентными проводниками и отличающиеся толщиной и скоростью проведения возбуждения.

Нервные миелинизированные волокна класса В являются преиму¬щественно прегангионарными аксонами нейронов вегетативной нервной системы, имеют толщину 1-3 мкм и скорость проведения 3-14 м/с. Волокна класса С — безмиелиновые волокна, представляющие собой как постганглионарные эфференты вегетативной нервной сис¬темы, так и афференты рецепторов боли и тепла. Эти волокна отличаются наименьшей толщиной (<1,5 мкм) и скоростью прове-дения возбуждения (0,5-2 м/с).

Механизм проведения и возбуждения в нервных волокнах объясня¬ется возникновением локальных токов, появляющихся между возбуж¬денным и невозбужденным участками мембраны нервного волокна (рис.3.3). При этом, в безмиелиновых волокнах возбуждение распро¬страняется непрерывно, а в миелинизированных волокнах — скачками между перехватами Ранвье, лишенными миелиновой оболочки. В верх¬ней части рисунка (1) показано распространение возбуждения по безмиелиновому волокну. Возбужденный участок (Д) характеризуется деполяризацией мембраны и в результате реверсии потенциала действия наружная поверхность мембраны приобретает отрицательный заряд, а внутренняя — положительный. Невозбужденный, расположенный ря¬дом участок мембраны (П) находится в покое и поляризован, т.е. снаружи заряжен положительно, а изнутри — отрицательно.

Между различно заряженными участками мембраны возникает электрический ток, действующий как раздражитель, повышающий проницаемость мембраны невозбужденного участка, деполяризующий его до критического уровня и тем самым приводящий к появлению потенциала действия соседнего участка. Ранее возбужденный участок реполяризуется, а ставший возбужденным участок приводит к появ¬лению локального тока с новым соседним невозбужденным участком мембраны. Так, последовательно, распространяется процесс возбуж¬дения, в основе чего лежат электротонические процессы. В миелинизированных волокнах (II), где миелиновая оболочка играет роль своеобразного изолятора и не позволяет электрическому току про¬ходить через соседний с возбужденным участок мембраны, локаль¬ные токи возникают между отдаленными друг от друга участками мебраны, лишенными миелиновой оболочки, т.е. перехватами Ранвье. Поэтому возбуждение распространяется не плавно по всей мембране, а скачками между перехватами. Такой тип проведения возбуждения получил название сальтаторного.

Поддержание потенциала покоя мембраны нервного волокна и восстановление его возбудимости после прохождения импульса осуществляется как и в других возбудимых структурах с помощью мембранных насосов, требующих расхода энергии. Поддержание энергетических запасов АТФ осуществляется за счет окислительно-восстановительных реакций, связанных с утилизацией глюкозы при гликолизе в цикле Кребса.