- •Лекция №1
- •I. Рудничная атмосфера
- •1. Рудничный воздух
- •1.1 Изменение химического состава и свойств атмосферного воздуха при его движении по горным выработкам
- •1.2 Постоянные составные части рудничного воздуха и их свойства
- •1.3 Ядовитые примеси рудничного воздуха
- •Лекция №2
- •2. Метан
- •2.1 Физико-химические свойства метана
- •2.2. Происхождение и виды связи метана с горными породами.
- •2.3 Метаноносность и метаноемкость угольных пластов и пород
- •2.4 Виды выделений метана в горные выработки
- •1. Обыкновенное; 2. Суфлярное; 3. Внезапное выделение с выбросом угля, а иногда и породы.
- •2.5 Борьба с метаном средствами вентиляции
- •2.6 Борьба с метаном средствами дегазации
- •2.6.1 Общие положения по дегазации угольных шахт
- •2.6.2 Способы дегазации неразгруженных от горного давления пластов и вмещающих пород
- •2.6.2.1 Дегазация при проведении капитальных и подготовительных выработок
- •2.6.2.2 Дегазация при проведении горизонтальных и наклонных выработок по угольным пластам.
- •2.6.2.3 Дегазация разрабатываемых угольных пластов скважинами, пробуренными из выработок
- •Лекция №3
- •2.6.3 Дегазация сближенных угольных пластов (спутников) и вмещающих пород при их подработке, надработке
- •2.6.3.1 Основы теории дегазации спутников
- •2.6.3.2 Схемы дегазации сближенных угольных пластов и вмещающих пород
- •Формулы для расчета
- •2.7 Внезапные выбросы угля и газа и меры борьбы с ними
- •2.7.1 Основы теории внезапных выбросов угля и газа
- •2.7.2 Мероприятия по борьбе с внезапными выбросами угля и газа.
- •2.7.2.1 Способы борьбы с внезапными выбросами их назначение и область применения.
- •2.7.2.2 Региональные мероприятия по борьбе с внезапными выбросами угля и газа
- •2.7.2.3 Локальные мероприятия по борьбе с внезапными выбросами
- •2.7.3 Прогноз выбросоопасности угольных пластов
- •Лекция №4
- •II. Рудничная аэромеханника
- •3. Основные законы рудничной аэродинамики
- •3.1 Виды давления в движущемся воздухе. Понятие о депрессии
- •3.2 Измерение давления и депрессии в движущемся потоке
- •3.3 Основные законы аэродинамики
- •3.3.1 Закон сохранения массы
- •3.3.2 Закон сохранения энергии
- •3.3.3 Режимы движения воздуха в шахтах
- •3.3.4Типы воздушных потоков
- •Лекция №5
- •4. Аэроданамическое сопротивление горных выработок
- •4.1 Природа и виды аэродинамического сопротивления
- •4.1.1 Сопротивление трения
- •4.1.2 Лобовые сопротивления в горных выработках
- •4.1.3 Местные сопротивления в горных выработках
- •4.1.4 Единицы аэродинамического сопротивления
- •5. Шахтные вентиляционные сети и методы их расчета
- •5.1 Элементы шахтной вентиляционной сети
- •5.2 Основные законы движения воздуха в шахтных вентиляционных сетях
- •5.3 Аналитические методы расчета простейших вентиляционных сетей
- •5.3.1 Последовательно-параллельные соединения и их свойства
- •Лекция №6
- •5.3.2. Диагональное соединение горных выработок и его свойства
- •5.3.3. Методика расчета распределения воздуха в сложных вентиляционных сетях
- •Лекция №7
- •6. Работа вентиляторов на шахтную
- •6.1 Аэродинамическая характеристика вентилятора и сети. Режим работы одного вентилятора на сеть
- •6.2 Анализ совместной работы вентиляторов на сеть
- •1. Анализ последовательной работы двух одинаковых вентиляторов методом суммарных характеристик
- •2. Анализ последовательной работы двух разных вентиляторов методом суммарных характеристик
- •3. Анализ последовательной работы двух разных вентиляторов методом активизированнх характеристик сети
- •4. Анализ параллельной работы двух одинаковых вентиляторов методом суммарных характеристик
- •5. Анализ параллельной работы двух разных вентиляторов методом суммарных характеристик
- •6. Анализ параллельной работы двух разных вентиляторов методом активизированных характеристик сети
- •7. Анализ параллельной работы вентиляторов установленных на разных стволах (связанных между собою горными выработками)
- •Лекция №8
- •7. Естественная тяга воздуха в шахтах
- •7.1 Общие сведения о естественной тяге
- •7.2 Измерение депрессии естественной тяги
- •7.2.1 Измерение естественной тяги V-образным жидкостным депрессиометром или микроманометром
- •7.2.2 Расчет величины депрессии естественной тяги гидростатическим методом
- •7.3 Влияние естественной тяги на работу вентилятора
- •Лекция №9
- •8. Регулирование распределения воздуха в вентиляционной сети шахты
- •8.1 Задачи и способы регулирования
- •8.2. Регулирование подачи воздуха в шахту изменением режима работы главного вентилятора
- •8.3 Регулирование распределения воздуха в вентиляционной сети шахты
- •8.3.1 Регулирование увеличением сопротивления выработок
- •8.3.2 Решение задачи о целесообразности отрицательного регулирования
- •8.3.3 Отрицательное регулирование вентиляционными окнами
- •8.3.4 Регулирование распределения воздуха положительными способами
- •Лекция №10
- •III. Вентиляция шахт
- •9. Проветривание тупиковых выработок и стволов
- •9.1 Общие положения и некоторые особенности проветривания тупиковых выработок и стволов
- •9.2 Способы подачи воздуха в забои тупиковых выработок и стволов
- •9.3 Вентиляторы и воздухопроводы установок местного проветривания
- •9.4 Методы расчета расхода воздуха для проветривания тупиковых выработок и стволов
- •Лекция №11
- •9.5 Выбор вентиляторов для проветривания тупиковых выработок и стволов
- •9.6 Примеры расчетов проветривания тупиковой выработки и ствола
- •9.7 Проветривание длинных тупиковых выработок и стволов несколькими вентиляторами
- •Лекция №12
- •10 Проветривание выемочных участков
- •10.1 Схемы проветривания выемочных участков
- •10.2 Прогноз метанообильности очистных забоев и выемочных участков
- •10.3 Расчет расхода воздуха для проветривания выемочных участков и очистных выработок
- •10.3.1 Расчет расхода воздуха для проветривания очистных выработок
- •Лекция №13
- •10.3.2 Расчет расхода воздуха для проветривания выемочных участков
- •11 Утечки воздуха в шахтах
- •11.1 Общие сведения об утечках и их классификация
- •11.2 Расчет утечек воздуха в шахтах
- •11.3 Мероприятия по снижению утечек воздуха
- •Лекция №14
- •12. Проектирование вентиляции шахт
- •12.1 Исходные данные для разработки проекта вентиляции шахты
- •12.2 Содержание проекта проветривания шахт
- •12.3 Способы проветривания шахт
- •12.4 Схемы проветривания шахт
- •12.4.1 Центральные схемы проветривания шахт их преимущества и недостатки
- •12.4.2 Диагональные схемы проветривания
- •12.5 Выбор схемы проветривания шахты
- •12.6 Расчет расхода воздуха для проветривания шахты
- •12.7 Расчет депресси шахты
- •12.8 Расчет производительности, депрессии вентилятора и его выбор
- •Лекция №15
- •13 Управление вентиляционными режимами шахт при пожарах
- •13.1 Особенности проветривания шахт при пожарах
- •13.2 Выбор вентиляционного режима при пожаре
- •13.3 Устойчивость и стабилизация вентиляции при пожаре
- •Лекция №16
- •14. Контроль вентиляции шахт
- •14.1 Требования правил безопасности к контролю вентиляции шахт
- •14.2 Контроль расхода и скорости движения воздуха
- •14.3 Контроль концентрации метана в горных выработках
- •14.4 Контроль вентиляции шахт методом депрессионных съемок
- •14.5 Контроль вентиляции шахт методом газовых съемок
5.3.3. Методика расчета распределения воздуха в сложных вентиляционных сетях
Задана вентиляционная сеть произвольной сложности, а также общее количество воздуха для проветривания или тип вентилятора для проветривания шахты. Необходимо определить расходы воздуха во всех ветвях соединения.
Для любого элементарного контура вентиляционной сети всегда выполняются 1-й и 2-й законы расчета вентиляционных сетей:
∑qi=0 (5.76)
∑hi=0 (5.77)
∑hi+∑pi=0 (5.78)
где ∑qi-сумма расходов воздуха в узле;
∑hi-алгеброическая сумма депрессий ветвей элементарного контура;
∑pi-алгеброическая сумма давлений, создаваемая вентиляторами во всех ветвях замкнутого контура.
Задача о распределении воздуха в сложной вентиляционной сети решается методом последовательных приближений. Он заключается в том, что первоначальное распределение воздуха задается произвольно, однако в целом по контуру или для узла сети оно должно подчиняться уравнению неразрывности потока, т.е. равенству (1).
Первоначально
произвольно принятое значение расхода
воздуха в ветви qiотличается от действительногоq
на некоторую величину ∆qi.
Тогда депрессия любой ветвиhiможет быть выражена равенством:
hi=Ri*q
=Ri*(q
+∆qi)2 (5.79)
Раскрывая скобки правой части равенства, получим
hi=Ri*(q
)2+2Riq
∆qi+Ri(∆qi)2 (5.80)
Полагая, что ∆qiмало, отбрасываем тем более малую величину Ri(∆qi)2и из равенства (5.80) определяем величину ошибки для одной ветви
∆qi=
(5.81)
Для всех ветвей, входящих в элементарный контур величина ошибки определится по формуле
∆qi=
(5.82)
С учетом равенства (5.78), согласно которому ∑hi=-∑pi, окончательно получим
∆qi=
(5.83)
где
-алгебраическая
сумма депрессий ветвей замкнутого
контура;
-сумма
произведенийRiнаq
по всем ветвям, взятая без учета
направления потока;
-алгебраическая
сумма давлений, создаваемая вентиляторами
во всех ветвях замкнутого контура.
При расчете распределения воздуха в сложной вентиляционной сети необходимо выполнять следующие правила:
Обход каждого элементарного контура выполнять по часовой стрелке;
Потоки, направленные по часовой стрелке считаются положительными, против-отрицательными;
Если величина ошибки (поправки) рассчитанная по формуле (5.83) положительна (>0), то она суммируется с потоками воздуха, направление которых совпадает с направлением обхода контура и вычитается из расходов направленных против направления обхода контура;
Если величина ошибки имеет отрицательный знак, она вычитается из потоков воздуха, направление которых совпадает с направлением обхода контура и суммируется с противоположными потоками;
Если величина ошибки по абсолютному значению больше первоначально принятого расхода воздуха и вычитается из него, это значит ,что первоначально принятое направление воздуха неверно и его необходимо изменить на противоположное.
Расчет выполняется несколько раз до тех пор пока последующие расходы воздуха будут отличаться от предыдущих с требуемой степенью точности.
Пример расчета
З
аданы
сопротивления ветвей последовательно-диагонального
соединения горных выработок (рис5.17).
Для проветривания сети установлен
вентилятор ВОД-21, с углом установки
лопаток рабочего колеса
=400.
Определить расходы воздуха в сети и во
всех ветвях соединения.
Рис.5.17 Схема к расчету распределения воздуха в ветвях последовательно-диагонального соединения горных выработок
Решение задачи.
1. Определяем число независимых уравнений для решения задачи, которое равно числу независимых контуров. Между числом независимых контуров, узлов и ветвей любой схемы существует следующая зависимость
К=В-У+1 (5.84)
где К- число контуров;
В- число ветвей;
У- число узлов.
В нашем примере К=6-4+1=3. Следовательно, используя равенство (5.83), необходимо составить три независимых уравнения. В это равенство входит алгебраическая сумма давлений, создаваемая вентилятором. В нашем примере это вентилятор ВОД-21 с углом установки лопаток рабочего колеса 400. Для решения задачи необходимо аппроксимировать характеристику вентилятора. В области промышленного использования характеристика вентилятора достаточно точно описывается равенством
H=a-b*Q2 (5.85)
где а-коэффициент, имеющий размерность и смысл депрессии;
b-коэффициент, характеризующий внутреннее сопротивление вентилятора.
Возьмем
две точки, расположенные на концах
рабочей характеристики вентилятора
ВОД-21 при
=400
Точка 1 на графике соответствует координатам Н1=400, кг/м2Q1 =43 м3/с , а точка Н2=200 кг/м2,Q1 =64 м3/с. Тогда можно составить два уравнения
400=а-b*432
200=а-b*642
Из этих равенств определяем, а=564, b=0.089 и характеристика вентилятора опишется равенством
Н=564-0.089*Q2 (5.86)
Обозначим контура. Контур 1-й 0-1-3-4-5-0, контур 2-й 1-2-3-1, контур 3-й 2-4-3-2.
Составим расчетные уравнения для обозначенных контуров:
Для первого контура
∆q1=-
(5.87)
После незначительных преобразований, получим для первого контура
∆q1=-
(5.88)
В нашем примере R0+R6+b=0.154 кµ. Подставляя значения постоянных в равенство (5.88) получим формулу для расчета поправок в первом контуре
∆q1=-
(5.89)
Составим уравнение для расчета поправок во втором контуре
∆q2=
(5.90)
Подставляя значения сопротивлений в равенство (5.90), получим
∆q2=
(5.91)
Составим уравнение для расчета поправок в третьем контуре
∆q3=
(5.92)
После подстановки значений аэродинамического сопротивления ветвей, получим
∆q3=
(5.93)
Принимаем первоначальное, произвольное распределение воздуха:
Q=45м3/с;q1=25 м3/с;q2=20 м3/с;q3=15 м3/с;q4=30 м3/с;q5=10 м3/с;
По формуле (5.89) определяем величину ошибки для первого контура. В нашем примере она будет равна 3.4 м3/с. Исправляем первоначально принятые значения воздуха в первом контуре
Q=48.4 м3/с,q2=23.4 м3/с;q433.4 м3/с;
По формуле (5.91) определяем величину ошибки для второго контура. В результате расчета получим ∆q2=3.3 м3/с. Исправляем первоначально принятые значения расходов воздуха во втором контуре
q1=28.3 м3/с,q5=13,3 м3/с,q2=20,1 м3/с.
По формуле (5.93) определяем величину ошибки для третьего контура. В результате расчета получим ∆q3=-1.8 м3/с. Исправляем первоначально принятые значения воздуха
q3=13,2 м3/с,q4=35,2 м3/с,q5=15,1 м3/с.
Далее, снова выполняем расчет величины ошибки для всех контуров и исправляем расходы воздуха. Расчет повторяется несколько раз до тех пор, пока последующие расходы воздуха будут отличаться от предыдущих с требуемой степенью точности.
