
- •Лекция №1
- •I. Рудничная атмосфера
- •1. Рудничный воздух
- •1.1 Изменение химического состава и свойств атмосферного воздуха при его движении по горным выработкам
- •1.2 Постоянные составные части рудничного воздуха и их свойства
- •1.3 Ядовитые примеси рудничного воздуха
- •Лекция №2
- •2. Метан
- •2.1 Физико-химические свойства метана
- •2.2. Происхождение и виды связи метана с горными породами.
- •2.3 Метаноносность и метаноемкость угольных пластов и пород
- •2.4 Виды выделений метана в горные выработки
- •1. Обыкновенное; 2. Суфлярное; 3. Внезапное выделение с выбросом угля, а иногда и породы.
- •2.5 Борьба с метаном средствами вентиляции
- •2.6 Борьба с метаном средствами дегазации
- •2.6.1 Общие положения по дегазации угольных шахт
- •2.6.2 Способы дегазации неразгруженных от горного давления пластов и вмещающих пород
- •2.6.2.1 Дегазация при проведении капитальных и подготовительных выработок
- •2.6.2.2 Дегазация при проведении горизонтальных и наклонных выработок по угольным пластам.
- •2.6.2.3 Дегазация разрабатываемых угольных пластов скважинами, пробуренными из выработок
- •Лекция №3
- •2.6.3 Дегазация сближенных угольных пластов (спутников) и вмещающих пород при их подработке, надработке
- •2.6.3.1 Основы теории дегазации спутников
- •2.6.3.2 Схемы дегазации сближенных угольных пластов и вмещающих пород
- •Формулы для расчета
- •2.7 Внезапные выбросы угля и газа и меры борьбы с ними
- •2.7.1 Основы теории внезапных выбросов угля и газа
- •2.7.2 Мероприятия по борьбе с внезапными выбросами угля и газа.
- •2.7.2.1 Способы борьбы с внезапными выбросами их назначение и область применения.
- •2.7.2.2 Региональные мероприятия по борьбе с внезапными выбросами угля и газа
- •2.7.2.3 Локальные мероприятия по борьбе с внезапными выбросами
- •2.7.3 Прогноз выбросоопасности угольных пластов
- •Лекция №4
- •II. Рудничная аэромеханника
- •3. Основные законы рудничной аэродинамики
- •3.1 Виды давления в движущемся воздухе. Понятие о депрессии
- •3.2 Измерение давления и депрессии в движущемся потоке
- •3.3 Основные законы аэродинамики
- •3.3.1 Закон сохранения массы
- •3.3.2 Закон сохранения энергии
- •3.3.3 Режимы движения воздуха в шахтах
- •3.3.4Типы воздушных потоков
- •Лекция №5
- •4. Аэроданамическое сопротивление горных выработок
- •4.1 Природа и виды аэродинамического сопротивления
- •4.1.1 Сопротивление трения
- •4.1.2 Лобовые сопротивления в горных выработках
- •4.1.3 Местные сопротивления в горных выработках
- •4.1.4 Единицы аэродинамического сопротивления
- •5. Шахтные вентиляционные сети и методы их расчета
- •5.1 Элементы шахтной вентиляционной сети
- •5.2 Основные законы движения воздуха в шахтных вентиляционных сетях
- •5.3 Аналитические методы расчета простейших вентиляционных сетей
- •5.3.1 Последовательно-параллельные соединения и их свойства
- •Лекция №6
- •5.3.2. Диагональное соединение горных выработок и его свойства
- •5.3.3. Методика расчета распределения воздуха в сложных вентиляционных сетях
- •Лекция №7
- •6. Работа вентиляторов на шахтную
- •6.1 Аэродинамическая характеристика вентилятора и сети. Режим работы одного вентилятора на сеть
- •6.2 Анализ совместной работы вентиляторов на сеть
- •1. Анализ последовательной работы двух одинаковых вентиляторов методом суммарных характеристик
- •2. Анализ последовательной работы двух разных вентиляторов методом суммарных характеристик
- •3. Анализ последовательной работы двух разных вентиляторов методом активизированнх характеристик сети
- •4. Анализ параллельной работы двух одинаковых вентиляторов методом суммарных характеристик
- •5. Анализ параллельной работы двух разных вентиляторов методом суммарных характеристик
- •6. Анализ параллельной работы двух разных вентиляторов методом активизированных характеристик сети
- •7. Анализ параллельной работы вентиляторов установленных на разных стволах (связанных между собою горными выработками)
- •Лекция №8
- •7. Естественная тяга воздуха в шахтах
- •7.1 Общие сведения о естественной тяге
- •7.2 Измерение депрессии естественной тяги
- •7.2.1 Измерение естественной тяги V-образным жидкостным депрессиометром или микроманометром
- •7.2.2 Расчет величины депрессии естественной тяги гидростатическим методом
- •7.3 Влияние естественной тяги на работу вентилятора
- •Лекция №9
- •8. Регулирование распределения воздуха в вентиляционной сети шахты
- •8.1 Задачи и способы регулирования
- •8.2. Регулирование подачи воздуха в шахту изменением режима работы главного вентилятора
- •8.3 Регулирование распределения воздуха в вентиляционной сети шахты
- •8.3.1 Регулирование увеличением сопротивления выработок
- •8.3.2 Решение задачи о целесообразности отрицательного регулирования
- •8.3.3 Отрицательное регулирование вентиляционными окнами
- •8.3.4 Регулирование распределения воздуха положительными способами
- •Лекция №10
- •III. Вентиляция шахт
- •9. Проветривание тупиковых выработок и стволов
- •9.1 Общие положения и некоторые особенности проветривания тупиковых выработок и стволов
- •9.2 Способы подачи воздуха в забои тупиковых выработок и стволов
- •9.3 Вентиляторы и воздухопроводы установок местного проветривания
- •9.4 Методы расчета расхода воздуха для проветривания тупиковых выработок и стволов
- •Лекция №11
- •9.5 Выбор вентиляторов для проветривания тупиковых выработок и стволов
- •9.6 Примеры расчетов проветривания тупиковой выработки и ствола
- •9.7 Проветривание длинных тупиковых выработок и стволов несколькими вентиляторами
- •Лекция №12
- •10 Проветривание выемочных участков
- •10.1 Схемы проветривания выемочных участков
- •10.2 Прогноз метанообильности очистных забоев и выемочных участков
- •10.3 Расчет расхода воздуха для проветривания выемочных участков и очистных выработок
- •10.3.1 Расчет расхода воздуха для проветривания очистных выработок
- •Лекция №13
- •10.3.2 Расчет расхода воздуха для проветривания выемочных участков
- •11 Утечки воздуха в шахтах
- •11.1 Общие сведения об утечках и их классификация
- •11.2 Расчет утечек воздуха в шахтах
- •11.3 Мероприятия по снижению утечек воздуха
- •Лекция №14
- •12. Проектирование вентиляции шахт
- •12.1 Исходные данные для разработки проекта вентиляции шахты
- •12.2 Содержание проекта проветривания шахт
- •12.3 Способы проветривания шахт
- •12.4 Схемы проветривания шахт
- •12.4.1 Центральные схемы проветривания шахт их преимущества и недостатки
- •12.4.2 Диагональные схемы проветривания
- •12.5 Выбор схемы проветривания шахты
- •12.6 Расчет расхода воздуха для проветривания шахты
- •12.7 Расчет депресси шахты
- •12.8 Расчет производительности, депрессии вентилятора и его выбор
- •Лекция №15
- •13 Управление вентиляционными режимами шахт при пожарах
- •13.1 Особенности проветривания шахт при пожарах
- •13.2 Выбор вентиляционного режима при пожаре
- •13.3 Устойчивость и стабилизация вентиляции при пожаре
- •Лекция №16
- •14. Контроль вентиляции шахт
- •14.1 Требования правил безопасности к контролю вентиляции шахт
- •14.2 Контроль расхода и скорости движения воздуха
- •14.3 Контроль концентрации метана в горных выработках
- •14.4 Контроль вентиляции шахт методом депрессионных съемок
- •14.5 Контроль вентиляции шахт методом газовых съемок
Лекция №4
II. Рудничная аэромеханника
3. Основные законы рудничной аэродинамики
3.1 Виды давления в движущемся воздухе. Понятие о депрессии
Любой движущийся объем воздуха всегда испытывает давление вышележащих слоев воздуха. Это давление называется аэростатическим (статическим) и является первой составной частью полного давления движущегося воздуха.
Движущийся воздух обладает кинетической энергией и в случае встречи, с какой либо преградой оказывает на преграду давление, величина которого зависит от кинетической энергии тела. Это давление называется динамическим или скоростным и является второй составной частью полного давления движущегося воздуха. Кинетическая энергия единицы объема движущегося воздуха определяется по формуле
Рд=(3.1)
где γ-объемный вес воздуха, кг/м3;
v-скорость движения воздуха, м/с.
Таким образом, полное давление равно сумме статического и динамического давлений. Для движущегося воздуха справедлив закон Паскаля, согласно которому статическое давление действует на все плоскости в потоке, включая стенки выработки и, направлено нормально к ним. В тоже время динамическое давление действует лишь на те поверхности, на которые происходит набегание потока.
Давление на пластинку бесконечно малой толщины, расположенную перпендикулярно направлению движения воздуха (рис.3.1) определится по формуле
[(Рст+Рдин)-Рст]*S=Рдин*Sм(3.2)
где Sм-Миделево сечение тела, м2
Рис.3.1 Схема к пояснению статического, динамического и полного давления в воздушном потоке
Давление на такую же пластинку, помещенную в поток параллельно направлению его движения, будет равно нулю.
Полная энергия единицы объема воздушного потока равна сумме его потенциальной и кинетической энергии. Так как потенциальная энергия потока характеризуется его статическим давлением, кинетическая – динамическим давлением, то полное давление равно
Р=Рст+Рдин(3.3)
Возьмем в выработке переменного сечения две точки 1, 2 (рис.2.2).
Рис.3.2
Схема к пояснению понятия депрессии
Допустим, что воздух движется от точки 1 к точке 2. Это будет соблюдаться только в том случае, если давление в точке 1 будет больше давления в точке 2.
Полное давление в точке 1 будет равно:
Рп.1=Рст.1+Рдин.1; (3.4)
а в точке
2Рп.2=Рст.2+Рдин.2 (3.5)
Разность давления в тачках 1, 2 называется депрессией и обозначается через h, H.
Разность статических давлений называется статической депрессией (hст)
hст=Рст.1-Рст.2 (3.6)
Разность динамических давлений - скоростной депрессией или скоростным напором (hск)
hск=Рдин.1-Рдин.2 (3.7)
Разность полных давлений - полной депрессией (hп)
hп=Рп.1-Рп.2(3.8)
3.2 Измерение давления и депрессии в движущемся потоке
Для этой цели используются приемники давления и измерители и линии связи (трубки). В качестве приемников давления используются воздухомерные трубки различной конструкции. Наиболее распространенной из них является трубка Пито-Прандля, схема которой представлена на рис.3.3
В этой трубке приемником статического давления служит кольцевая щель или 4-6 отверстий 1 диаметром 0.1d , расположенных по периметру трубки, а приемником полного напора - осевое отверстие 2.
Рис.3.3 Схема воздухомерной трубки
Измерителями давления служат жидкостные манометры и микроманометры. В рудничной вентиляции широкое распространение получили микроманометры типа ММН, схема которого представлена на рис.3.4
Рис.3.4 Схема микроманометра
Жидкостный микроманометр, изображенный на рис.3.4, состоит из двух колен, одно из которых имеет изменяемый в определенных пределах наклон и значительно меньший диаметр. Как видно из рис.3.4, к широкому сосуду подведено большее давление, а меньшее - к подвижной измерительной трубке малого диаметра.
Обозначим площадь измерительной трубки f , а поперечное сечение сосуда - через F. Под действием разности давлений ∆Р=Р1-Р2=hγж(где Р1> Р2и γж- удельный вес жидкости) уровень жидкости в трубке повысится на величину а от нулевого положения, а в широком сосуде – опустится на величину h0от начального нулевого положения, при этом объем жидкости равный h0*F, перетечет в трубку и будет равен объему а*f, т.е.
h0*F= а*f (3.9)
Разность уровней в коленах будет равна
h=h0+ h1 (3.10)
где h0-вертикальная высота опускания жидкости в широком сосуде;
h1-вертикальная высота подъема жидкости в измерительной трубке.
Но h1=а*Sinα (3.11)
и h0=а*f/F (3.12)
Подставив вместо h1и h0их значения в предыдущее уравнение, получим
h=a(Sinα
+(3.13)
Следовательно, искомая разность давлений
∆Р= γж
h=a (Sinα +
γж (3.14)
Отсюда
видно, что увеличение «масштаба»
измерения есть отношение отсчитываемой
на шкале прибора величины
к вертикальной высоте столба жидкости,
h уравновешивающей измеряемую разность
давлений,
(3.15)
Чувствительность прибора будет тем больше, чем меньше отношение f/F и чем меньше угол наклона α. В микроманометрах типа ММН-240 f/F=1/400, Sinα=0,2-0,8, а диаметр трубки 2 мм.