
- •Федеральное агентство по образованию
- •Научный редактор Кащук м.Г.
- •Предисловие
- •Введение
- •Условные обозначения
- •Рдс – ручная дуговая сварка штучными электродами;
- •Оцк – объемно-центрированная кристаллическая решетка;
- •Мхн – микрохимическая неоднородность.
- •1. Классификация сталей и сплавов
- •1. По химическому составу:
- •2. По назначению в зависимости от основных свойств:
- •3. По системе легирования:
- •5. По системе упрочнения твердого раствора:
- •2. Особенности работы сварных конструкций из специальных сталей и сплавов
- •3. Влияние легирующих элементов на процессы, протекающие в сталях при сварке
- •3.1. Влияние легирующих элементов на процессы, протекающие при нагреве
- •3.2. Влияние легирующих элементов на превращения аустенита при охлаждении
- •3.3. Влияние легирующих элементов на структурные превращения при сварке
- •3.4. Влияние легирующих элементов на физические свойства сталей
- •3.5. Влияние легирующих элементов на плавление и кристаллизацию металлов и сплавов
- •3.5.1. Особенности кристаллизации сварочной ванны
- •3.6. Химическая неоднородность сварного соединения
- •3.7. Влияние режима сварки на степень химической неоднородности сварного шва
- •4. Свариваемость легированных сталей
- •4.1. Горячие трещины в сварных соединениях
- •4.1.1. Методы повышения сопротивляемости сварных соединений образованию горячих трещин
- •4.2. Холодные трещины в сварных соединениях
- •4.2.1. Способы повышения сопротивляемости сварных соединений легированных сталей холодным трещинам
- •4.3. Ламелярные трещины
- •4.4. Трещины повторного нагрева
- •4.5. Хрупкие разрушения
- •4.6. Термическая обработка сварных соединений
- •5. Сварка жаропрочных перлитных сталей
- •5.1. Трудности при сварке жаропрочных перлитных сталей
- •5.2. Технология сварки и свойства сварных соединений
- •5.3. Термическая обработка сварных соединений
- •Режим отпуска сварных соединений, выполненных дуговой сваркой
- •6. Сварка хромистых сталей
- •6.1. Общие рекомендации по сварке хромистых сталей
- •6.2. Сварка мартенситных сталей
- •4. Термообработка после сварки (табл. 12).
- •Тепловой режим сварки мартенситных сталей
- •6.2.1. Технология сварки и свойства сварных соединений
- •6.3. Сварка мартенситно-ферритных сталей
- •6.3.1. Технология сварки и свойства сварных соединений
- •6.4. Сварка ферритных сталей
- •6.4.1. Технология сварки и свойства сварных соединений
- •7. Сварка аустенитных хромоникелевых сталей
- •Химический состав коррозионно-стойких сталей
- •Химических состав некоторых жаропрочных сталей
- •7.1. Трудности при сварке хромоникелевых сталей
- •4. Поры в наплавленном металле.
- •7.1.1. Трещины в сварных соединениях
- •7.1.2. Межкристаллитная коррозия сварных соединений
- •7.1.3. Охрупчивание металла сварного соединения при эксплуатации
- •7.1.4. Поры в наплавленном металле
- •7.2. Общие рекомендации по сварке аустенитных сталей
- •7.3. Технология сварки
- •7.4. Термическая обработка
- •8. Сварка разнородных сталей
- •8.1. Образование и строение зоны сплавления
- •8.2. Образование диффузионных прослоек в зоне сплавления
- •8.3. Дефекты сварных соединений
- •8.4. Рекомендации по сварке разнородных сталей
- •9. Сварка сплавов на никелевой основе
- •9.1. Трудности при сварке никелевых сплавов
- •Химическая неоднородность металла шва
- •9.2. Технология сварки и свойства соединений
- •Приложения
- •Перечень лабораторных и практических работ
- •Темы индивидуальных докладов
- •Условное обозначение элементов в марках сталей
- •Список использованной и рекомендуемой литературы Основная литература
- •Дополнительная литература
- •Введение ……………………………………………………………... 4
4.3. Ламелярные трещины
ЛТ – трещины в ЗТВ, образующиеся параллельно поверхности свариваемых листов, имеющие ступенчатый, каскадный характер. Визуально наблюдаются после окончания сварки и охлаждения. Излом хрупкий, без следов окисления, большую часть которого составляют плоские древовидные участки (имеющие вид расщепленного дерева). Эти участки совпадают со слоистостью металла, образующейся в результате прокатки, и по этой причине трещины получили название ламелярных (слоистых трещин).
Образуются ЛТ, как правило, в угловых и тавровых соединениях низколегированных сталей мартеновского и конвертерного производства под действием сварочных напряжений, направленных по толщине свариваемых листов. По внешним признакам напоминают XT.
С увеличением содержания углерода в стали возможно образование и XT, и ЛТ, а при С > 0,3 % преимущественно образуются XT. Образование ЛТ связано с наличием в металле вытянутых плоских неметаллических включений типа сульфидов и силикатов.
Разрушение металла связано с механическим отделением неметаллических включений от металлической матрицы, отрыв неметаллических включений вследствие различной величины термического расширения и т.п.
Для предотвращения ЛТ необходимо конструировать и изготавливать узел так, чтобы сварочные напряжения по направлению толщины листа были минимальны, применять предварительный и сопутствующий подогрев, осуществлять наплавку на свариваемые кромки.
Наиболее эффективный способ – повышение качества стали путём снижения содержания серы.
4.4. Трещины повторного нагрева
Трещины повторного нагрева (ТПН) образуются в процессе высокого отпуска сварного соединения с целью снятия сварочных напряжений. Они характерны для низколегированных и легированных сталей, в особенности для перлитных жаропрочных Сг-Mo-V сталей.
ТПН – межкристаллическое разрушение в крупнозернистой части ЗТВ. Критический интервал температур растрескивания составляет 500...700 °С.
Образование ТПН связывают с локальной пластической деформацией ползучести, обусловливающей релаксацию (снятие) сварочных напряжений.
Нагрев и выдержка при 500...700 °С приводят к выделению мелкодисперсных частиц карбидов в теле зерна. Упрочнение последних способствует развитию пластических деформаций преимущественно в приграничных областях зерен.
В результате относительного смещения зерен на их стыках появляются пики микронапряжений, которые являются причиной зарождения микротрещин.
Образование микротрещин облегчается сегрегацией примесей на границах зерен, снижающих их прочность сцепления.
Склонность к ТПН зависит от состава стали, микроструктуры ЗТВ и величины остаточных сварочных напряжений. Наличие в стали Сг, Mo, V, а также Сu, Ti, Nb и примесей Р, S, Sn, Sb и др. способствует появлению склонности к растрескиванию.
Меры предотвращения ТПН предусматривают выбор рационального легирования стали, особенно уменьшение до возможного минимума Мо и V, снижение уровня остаточных напряжений в сварных узлах и повышение Т отпуска свыше 700 °С.
4.5. Хрупкие разрушения
Хрупкое разрушение (ХР) характеризуется тем, что оно не сопровождается заметной пластической макродеформацией и происходит при действии средних напряжений, не превышающих Т.
Траектория разрушения близка к прямолинейной, излом нормален к поверхности и имеет кристаллический характер. Хрупкие разрушения, как правило, являются внутрикристаллическими.
Разрушение в большинстве случаев происходит под действием нормальных напряжений и распространяется вдоль наименее упакованной кристаллической плоскости, называемой плоскостью слома (отрыва).
Но иногда (водородное насыщение, коррозия и др.) ХР может быть межкристаллическим. ХР часто происходит внезапно и распространяется с большой скоростью и малыми затратами энергии. В ряде случаев оно приводит к катастрофическим разрушениям в сварных конструкциях в процессе эксплуатации.
Металлы и сплавы с ОЦК-решеткой разрушаются пластично (вязко) или хрупко в зависимости от состава и условий эксплуатации.
Примеси и легирующие элементы, блокирующие подвижность дислокаций, повышают склонность к ХР. Переход от пластичного к хрупкому разрушению может произойти при снижении температуры, увеличении скорости деформирования и остроты надреза.
Процесс хрупкого разрушения может включать три этапа: возникновение трещины, медленное (стабильное) ее развитие и лавинообразное распространение разрушения.
Отдельные конструкции допускаются к эксплуатации с трещиной при условии контроля за их медленным развитием.
В сварных соединениях легированных сталей наибольшую степень охрупчивания получают участки на расстоянии 0,1 мм от линии сплавления вследствие укрупнения зерна и образования твердых и малопластичных составляющих структуры в результате превращения аустенита (трансформационное охрупчивание).
Причиной охрупчивания является и сегрегация примесей на границах зерен, обусловливающая межзеренное ХР.
Снижение степени охрупчивания достигается технологическими и металлургическими мерами.
Для низкоуглеродистых сталей это ограничения g/v или высокий отпуск сварного соединения. Для легированных сталей технологические меры аналогичны применяемым для предотвращения XT.
Легирование сталей Mo, Ni, снижение содержания S, P, O, N и Н снижает их склонность к ХР. Стали электрошлакового и вакуумно-дугового переплава имеют высокое сопротивление ХР.