
- •Прикладная механика
- •1 Общий расчет привода
- •Примеры общего расчета привода
- •Результаты общего расчета привода с одноступенчатым червячным редуктором
- •2 Расчёт одноступенчатого редуктора с
- •2.1 Расчетная схема. Исходные данные
- •2.8 Проверочный расчет выходного вала цилиндрического прямозубого и косозубого редукторов
- •Суммарные реакции опор (реакции для расчета подшипников):
- •2.8.1.3 Определение изгибающих и крутящих моментов по длине вала
- •2.8.2.1 Расчетная схема. Исходные данные
- •2.8.2.2 Определение внешних нагрузок - реакций связей
- •2.8.2.3 Определение внутренних усилий в поперечных сечениях вала
- •2.8.2.4 Выбор материала. Расчет вала на статическую прочность
- •3. Расчет одноступенчатого редуктора
- •3.1 Расчетная схема. Исходные данные
- •3.2 Выбор материала и термической обработки колес
- •3.3 Допускаемые контактные напряжения
- •3.4 Допускаемые изгибные напряжения
- •3.5 Проектировочный расчет конической прямозубой передачи
- •3.5.1 Диаметр внешней делительной окружности колеса
- •3.5.2 Углы делительных конусов шестерни и колеса, конусное
- •3.5.3 Модуль передачи
- •3.5.4 Число зубьев конических колес
- •3.5.5 Фактически передаточное число
- •3.5.6 Размеры колес конической передачи
- •3.5.7 Силы в зацеплении
- •3.5.8 Степень точности зацепления
- •3.6 Проверочный расчет зубьев конического колеса
- •3.6.1 Проверка зубьев конического колеса по напряжениям изгиба
- •3.6.2 Проверка зубьев конического колеса по
- •3.7 Эскизное проектирование конической передачи
- •3.7.1 Проектировочный расчет входного вала
- •3.7.1.1 Расчетная схема. Исходные данные
- •3.7.1.2 Геометрические размеры входного вала
- •3.7.2 Проектировочный расчет выходного вала
- •3.7.2.1 Расчетная схема. Исходные данные
- •3.7.2.2 Геометрические размеры выходного вала
- •3.7.3 Выбор подшипников для валов
- •3.7.4 Эскизная компоновка передачи
- •3.8 Проверочный расчет выходного вала конического прямозубого
- •3.8.1 Расчетная схема. Исходные данные
- •3.8.3 Определение изгибающих и крутящих моментов по длине вала и построение эпюр Мх(z), Му(z), Мz(z)
- •3.8.4 Выбор материала. Расчет вала на статическую прочность
- •4 Расчет одноступенчатого редуктора
- •4.1 Расчетная схема. Исходные данные
- •4.2 Выбор материала червяка и колеса
- •Ожидаемая скорость скольжения, для данного задания
- •4.3 Допускаемые контактные напряжения
- •4.4 Допускаемые изгибные напряжения
- •4.5 Проектировочный расчет червячной передачи
- •4.5.1 Межосевое расстояние
- •4.5.2 Основные параметры передачи
- •4.5.3 Геометрические размеры червяка и колеса
- •4.5.4 Кпд передачи
- •4.5.5 Тепловой расчет передачи
- •4.5.6 Силы в зацеплении
- •4.5.7 Степень точности зацепления
- •4.6 Проверочный расчет зубьев колеса
- •4.6.1 Проверочный расчет по контактным напряжениям
- •4.6.2 Проверочный расчет по напряжениям изгиба зубьев
- •4.7 Эскизное проектирование червячной передачи
- •4.7.1.1 Расчетная схема. Исходные данные
- •4.7.1.2 Геометрические размеры вала и выбор подшипников
- •Диаметр вала (цапфы) под подшипники
- •4.7.3 Эскизная компоновка передачи
- •4.8 Проверочный расчет выходного вала червячного редуктора
- •4.8.1 Расчетная схема. Исходные данные
- •4.8.2 Определение внешних нагрузок – реакций связей
- •4.8.3 Определение внутренних усилий в поперечных сечениях вала
- •4.8.4 Выбор материала. Расчет вала на статическую прочность
- •5 Проверочный расчёт подшипников выходного
- •5.2 Методика расчёта роликового конического однорядного
- •5.2.2 Расчёт по динамической грузоподъемности
- •1.1 Расчётная схема. Исходные данные
- •1.2 Проверочный расчёт подшипника по динамической
- •2.1 Расчётная схема. Исходные данные
- •3.1 Расчётная схема. Исходные данные
- •3.2 Проверочный расчёт подшипника по динамической
- •6 Расчет соединения вал-ступица выходного вала
- •6.1 Расчетная схема. Исходные данные
- •6.3 Проверочный расчет шпоночного соединения на прочность
- •Примеры выбора шпонки и расчета соединения вал-ступица выходного вала редуктора
- •1.1 Расчётная схема. Исходные данные
- •1.3 Проверочный расчёт шпоночного соединения на прочность
- •2.1 Расчётная схема. Исходные данные
- •3.1 Расчётная схема. Исходные данные
- •3.3 Проверочный расчет шпоночного соединения на прочность
- •7 Выбор муфты входного вала
- •8 Эскизное проектирование корпуса редуктора
- •Толщина упорного буртика δ1и толщина фланца δ2:
- •9 Сборка и особенности эксплуатации редуктора
- •Справочные материалы для расчёта
- •Нормальные линейные размеры, мм
- •Кратные и дольные единицы си
- •Соотношения между единицами физических величин
- •Общие данные по материалам для всех видов задач
- •Механические характеристики некоторых марок стали
- •Отливки из высокопрочного чугуна с шаровидным графитом
- •Твердость и режимы отливок из антифрикционного чугуна
- •Электродвигатели общего применения, асинхронные (переменного тока, закрытые, обдуваемые)
- •Диаметры вала электродвигателей (мм)
- •Электродвигатели общего применения, асинхронные (в защищенном (а), закрытом обдуваемом (ао) исполнении)
- •Технические данные двигателей постоянного тока серии 2п общепромышленного применения (напряжение 27в, закрытого типа с принудительной вентиляцией)
- •Технические данные двигателей постоянного тока специального назначения, применяемые в электроприводах авиационных систем (закрытого типа с перпендикулярной вентиляцией)
- •Технические данные двигателей постоянного тока специального назначения, применяемые в электроприводах ракетно-артиллерийских систем (закрытого типа с принудительной вентиляцией)
- •Значения кпд и передаточных отношений I (чисел u) передач
- •Стандартные передаточные числа u (отношения I )
- •Материалы для изготовления зубчатых колес и варианты термической обработки (то)
- •Основные материалы для изготовления зубчатых колес
- •Пределы контактной и изгибной выносливости зубьев
- •Значения коэффициента ширины колеса
- •Степень точности передач по нормам плавности в зависимости от скорости
- •Коэффициент формы зуба yf для эвольвентного
- •Коэффициенты смещения Хе1 и Хе2 для определения внешнего диаметра конических прямозубых колес
- •Коэффициенты формы зуба yf в зависимости от коэффициента смещения инструмента Хе1
- •Формулы определения основных размеров нормальных зубчатых колес и сил в зацеплении
- •Материалы для изготовления червячных колес и их характеристики
- •Допускаемые контактные и изгибные напряжения
- •Значения [σ]но для червячных колес из условия стойкости передачи к заеданию
- •Механические характеристики и значения [σ]fo для материалов червячных колес
- •Сочетание модулей m и коэффициентов q диаметра червяка
- •Зависимости приведенного коэффициента трения f ' и угла трения ρ' между червяком и колесом от скорости скольжения Vs
- •Коэффициент формы зуба yf для червячных колес
- •Данные для определения размеров валов
- •Зависимость высоты заплечика (tцил, tкон), координаты фаски подшипника r и размера фаски (f) от диаметра (d)
- •Основные размеры биметаллических втулок
- •Допустимые значения [р] и [рv] для подшипников скольжения
- •Значения коэффициентов радиальной х и осевой у нагрузок для однорядных подшипников
- •Значение коэффициента безопасности Кσ для подшипников качения
- •Значения температурного коэффициента Кт для подшипников качения
- •Основные материалы для изготовления валов
- •Муфты втулочные со шпонками (размеры в мм)
- •Муфты фланцевые
- •Значения коэффициента режима работы для муфт
- •Соединения шлицевые (зубчатые) прямобочные
- •Масла, применяемые для зубчатых передач
- •Масла, применяемые для червячных передач
- •Значения вязкости масел
- •На усталостную прочность
- •(Для шпоночного паза)
- •Рекомендации по расчету корпуса редуктора
- •Перечень основных стандартов по деталям машин
- •Тригонометрические функции
2.8.2.4 Выбор материала. Расчет вала на статическую прочность
Для большинства валов применяют термически обработанные среднеуглеродистые и легированные стали 45, 40Х, механические характеристики которых приведены в таблице 44 [Р. 10].
Так как шестерня изготовлена как одно целое с валом, то материал вала В1 тот же, что и для шестерни: сталь 40Х, термообработка, улучшение и закалка; для заготовки диаметром d ≤ 120 мм (таблица 44 [Р. 10]) НВ=270;
σ =900 Н/мм2; σт = 750 Н/мм2; τт = 450 Н/мм2; σ-1 = 410 Н/мм2; τ-1 = 240 Н/мм2.
Для изготовления выходного вала (В2) назначаем сталь 45 с характеристиками для заготовки с d ≤ 80 мм (таблица 44 [Р. 10]): НВ = 270;
σв = 900 Н/мм2; σт = 650 Н/мм2; τт = 390 Н/мм2; σ-1 =380 Н/мм2;
τ-1 = 230 Н/мм2.
z
М2
z
Рис. 2.10 Эпюры МХ(z), МУ(z), МZ(z)
Расчет выходного вала на статическую прочность производится по следующей методике:
условие прочности SТ≥ [S]Т,
где SТ– коэффициент прочности по текучести;
[S]Т= 1,3…1,6 – допускаемый коэффициент запаса прочности по текучести.
Коэффициент запаса прочности по текучести определяется по формуле
SТ=,
где KП= 2,5 – коэффициент перегрузки;
σэкв– эквивалентное напряжение, определяемое по формуле
σэкв=,
где W=- осевой момент сопротивления сечения
вала круглой формы;
dк= 32 мм – диаметр участка вала для посадки колеса;
Ми=- результирующий изгибающий момент;
Мэкв=- эквивалентный момент.
После подстановки в расчетные формулы цифровых значений имеем:
Ми=Нм;
Мэ=Нм;
W=мм3; σэкв=
Н/мм2;
SТ=>>
[S]Т= 1,3…1,6.
Статическая прочность обеспечивается с большим запасом.
3. Расчет одноступенчатого редуктора
С КОНИЧЕСКОЙ ПРЯМОЗУБОЙ ПЕРЕДАЧЕЙ
3.1 Расчетная схема. Исходные данные
На расчетную схему в условных обозначениях наносятся все известные параметры, а также параметры, подлежащие определению в этом разделе. Расчетная схема конической прямозубой передачи изображена на рис. 3.1, а геометрические параметры шестерни Т1 и колеса Т2 показаны на рис 3.2.
Исходные данные для расчета прямозубой конической передачи берутся из условия задания и общего расчета привода:
вращающий момент на выходном валу - Т2 = 95,5 Н·м;
передаточное число – u = 2,38;
частота и угловая скорость вращения входного вала: n1 = 950 об/мин,
ω1 = 99,4 с-1;
частота и угловая скорость вращения выходного вала: n2 = 400 об/мин,
ω2 = 41,9 с-1;
ресурс работы: t = Lh = 30000 часов.
Рис. 3.1 Расчетная схема конической передачи
Рис. 3.2 Геометрические параметры шестерни и колеса
3.2 Выбор материала и термической обработки колес
Материалы для изготовления зубчатых колес выбирают в зависимости от условий эксплуатации, требований к габаритам передачи, технологии изготовления и с учетом экономических показателей. Применяют как среднеуглеродистые, так и высокоуглеродистые стали с различными вариантами термообработки: улучшение, закалка токами высокой частоты (ТВЧ), цементация.
Термическая обработка повышает твердость рабочей поверхности зубьев, которая определяется в единицах Бринелля (НВ). При твердости НВ > 350 твердость материала измеряется по шкале Роквелла (HRC). Твердость HRC переводится в твердость НВ по таблице 16 [Р. 10] или по приближенному соотношению 10 НВ ≈1 HRC.
Чем выше твердость рабочей поверхности зубьев, тем выше допускаемые контактные напряжения [σ]Н и тем меньше размеры передач, но сложнее технология изготовления колес и выше стоимость.
Так как в задании нет особых требований в отношении габаритов передачи, выбираем широко применяемые недорогие материалы (таблица 16 [Р. 10]): для колеса - сталь марки 40X, термообработка колеса – улучшение, твердость поверхности 269..302 НВ; для шестерни – сталь 40X, термообработка –улучшение и закалка ТВЧ, твердость поверхности зубьев 45..50 HRC.
Средняя твердость определяется по формуле:
НВср = 0,5 (НВmin + НВmax), (3.1)
для колеса НВср = 0,5(269+302) = 285,5;
для шестерни НRCср = 0,5(45+50)=47,5 или НВср=450.