Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Информатика_ЗФ / УМ_Опорный конспект лекций.doc
Скачиваний:
193
Добавлен:
22.03.2016
Размер:
2.32 Mб
Скачать

7 Лекция: Базовые алгоритмические структуры

Рассматриваются основные понятия об алгоритме в программах и алгоритмизации решения задач.

"Алгоритм" является базовым основополагающим понятием информатики, а алгоритмизация (программирование) – основным разделом курса информатики (ядром курса). Понятие алгоритма, как и понятие информации, точно определить невозможно. Поэтому встречаются самые разнообразные определения – от "наивно-интуитивных" ("алгоритм – это план решения задачи") до "строго формализованных" (нормальные алгоритмы Маркова).

В качестве рабочего определения алгоритма возьмем следующее определение.

Алгоритм – это упорядоченная совокупность точных (формализованных) и полных команд исполнителю алгоритма (человек, ЭВМ), задающих порядок и содержание действий, которые он должен выполнить для нахождения решения любой задачи из рассматриваемого класса задач.

Алгоритм удовлетворяет следующим основным свойствам:

  1. Конечность (дискретность) команд и выполняемых по ним действий алгоритма.

  2. Выполнимость в определенной операционной среде (в определенном классе исполнителей).

  3. Результативность отдельных команд и всего алгоритма.

  4. Применимость алгоритма ко всем возможным входным данным конкретного класса задач.

  5. Определенность (детерминированность) команд и всего алгоритма для всех входных данных.

  6. Формализованное, конструктивное описание (представление) команд алгоритма.

  7. Минимальная полнота системы команд алгоритм.

  8. Непротиворечивость любых команд алгоритма на любом наборе входных данных.

Любой алгоритм ориентирован на некоторый общий метод решения класса задач и представляет собой формализованную запись метода, процедуры.

Алгоритм, записанный на некотором алгоритмическом, формальном языке, состоит из заголовка алгоритма (описания параметров, спецификаций класса задач) и тела алгоритма (последовательности команд исполнителя, преобразующих входные параметры в выходные).

Для записи, исполнения, обмена и хранения алгоритмов существуют различные средства, языки, псевдокоды – блок-схемы (структурные схемы алгоритмов), структурограммы (схемы Нэсси-Шнайдермана), Р-схемы, школьный алгоритмический язык (ШАЯ), различные языки программирования.

В качестве языка описания алгоритмов нами далее используется визуальный графический способ описания с помощью блок-схем, так как он более нагляден.

Более подробно с процессом описания алгоритмов можно ознакомиться в методических указаниях:

Лантратов О.И. Методические указания и задания к практическим занятиям по теме “Структурные схемы алгоритмов” /О.И. Лантратов, Е.Б. Ивушкина. – Шахты: Изд-во ДГАС, 1997.

8 Лекция: Данные, их типы, структуры и обработка

Рассматриваются основные понятия о данных к алгоритмам, их базовые типы и структуры, вопросы их использования в алгоритмизации задач.

Любая актуализация информации опирается на какие-то данные, любые данные могут быть каким-то образом актуализированы.

Данные – это некоторые сообщения, слова в некотором заданном алфавите.

Пример. Число 123 – данное, представляющее собой слово в алфавите из десяти натуральных цифр; число 12,34 – данное, представляющее собой слово в алфавите из десяти натуральных цифр и десятичной запятой; текст "математика и информатика – нужные дисциплины", – данное в алфавите из символов русского языка и знаков препинания, включая пробел.

Текущее (то есть рассматриваемое в данный момент времени) состояние данных называют текущим значением данных или просто значением.

До разработки алгоритма (программы) необходимо выбрать оптимальную для реализации задачи структуру данных. Неудачный выбор данных и их описания может не только усложнить решаемую задачу и сделать ее плохо понимаемой, но и привести к неверным результатам. На структуру данных влияет и выбранный метод решения.

Пример. При решении системы линейных алгебраических уравнений можно воспользоваться методом Крамера (с помощью определителей) или методом Гаусса (с помощью последовательных исключений неизвестных). Метод Крамера потребует при реализации примерно в 3 раза больше операций, чем метод Гаусса, и поэтому им никогда не пользуются при расчетах на ЭВМ.

Тип данных характеризует область определения значений данных.

Задаются типы данных простым перечислением значений типа, например как в простых типах данных, либо объединением (структурированием) ранее определенных каких-то типов – структурированные типы данных.

Пример. Зададим простые типы данных "специальность", "студент", "вуз" следующим перечислением:

  • специальность = (филолог, историк, математик, медик);

  • студент = (Петров, Николаев, Семенов, Иванова, Петрова);

  • вуз = (МГУ, РГУ, КБГУ).

Значением типа "студент" может быть Петров.

Пример. Опишем структурированный тип данных "специальность_студента":

  • специальность_студента=(специальность, студент).

Значением типа "специальность_студента" может быть пара (историк, Семенов).

Для обозначения текущих значений данных используются константы – числовые, текстовые, логические.

Часто (в зависимости от задачи) рассматривают данные, которые имеют не только "линейную" (как приведенные выше), но и иерархическую структуру.

Пример. Структуру "вуз" можно задать иерархической структурой, состоящей, например, из следующих уровней: "Ректорат", "Деканаты и подразделения", "Кафедры", "Отделы", "Преподаватели и сотрудники".

В алгоритмических языках есть стандартные типы, например, целые, вещественные, символьные, тестовые и логические типы. Они в этих языках не уточняются (не определяются, описываются явно) и имеют соответствующие описания с помощью служебных слов.

Пример. В школьном алгоритмическом языке (ШАЯ), например, целые, вещественные, символьные, текстовые (литерные, стринговые) и логические типы данных описываются ключевыми словами цел, вещ, сим, лит, лог. В языке Паскаль – аналогичными ключевыми словами integer, real, char, string, boolean.

Каждый тип данных допускает использование определенных операций со значениями типа ("с типом").

Пример. Для целого типа данных назовем операции "=" (присвоение), "+", "–", "*", "=" (сравнение на равенство), "≠", "<", ">", "≤", "≥".. Для вещественного типа данных еще и операция "/" (деление). Для символьного типа данных – только ":=", "=", "≠", "<", ">", "≤", "≥". Например, сравнение "а"<"b" означает, что символ "а" предшествует символу "b" то есть код буквы "a" меньше кода буквы "b" (коды символов приводятся, например, в таблице ASCII – Аmerican Standard Code for Information Interchange, американский стандарт кодирования для обмена данными). Для текстового (литерного) типа данных можно использовать еще и операцию конкатенации (присоединения справа) текстов "+". Например, "аб"+"ба" даст новый текст "абба". Для данных логического типа определены логические операции и отношения сравнения. Например, на Basic для логических переменных a, b, c можно записать корректное выражение: a and b or (c or not a).

Для описания переменных, значениями которых могут быть лишь символы, тексты, используются соответствующие ключевые слова: на ШАЯ – сим, лит, на Паскале – char, string. Текстовые (символьные) константы обычно заключают в апострофы.

Наиболее часто используемая структура данных – массив.

Одномерный массив (вектор, ряд, линейная таблица) – это совокупность значений некоторого простого типа (целого, вещественного, символьного, текстового или логического типа), перенумерованных в каком-то порядке и имеющих общее имя. Для выделения конкретного элемента массива необходимо указать его порядковый номер в этом ряду.

Пример. Последовательность чисел 89, –65, 9, 0, –1.7 может образовывать одномерный вещественный массив размерности 5, например, с именем x вида: x[1] = 89, x[2] = –65, x[3] = 9, x[4] = 0, x[5] = –1.7.

Значение порядкового номера элемента массива называется индексом элемента.

Пример. Можно ссылаться на элемент х[4], элемент х[i], элемент x[4+j] массива х. При текущих значениях переменных i = 2 и j = 1 эти индексы определяют, соответственно, 4-й, 2-й и 5-й элементы массива.

Для обозначения (нового типа объектов) массивов в алгоритмических языках обычно вводится специальное служебное слово.

Пример. В ШАЯ – это слово "таб", после которого приводится имя массива и в квадратных скобках его размерность, например, для одномерного массива – в виде [m:n], где m – номер первого элемента массива (часто 1), n – номер последнего элемента (шаг перебора элементов равен 1). В Basic имеется соответствующее слово dim (dimension). Вышеуказанная последовательность из пяти чисел описывается на ШАЯ в виде: вещ таб x[1:5], а на Basic – dim x(5).

Двумерный массив (матрица, прямоугольная таблица) – совокупность одномерных векторов, рассматриваемых либо "горизонтально" (векторов-строк), либо "вертикально" (векторов-столбцов) и имеющих одинаковую размерность, одинаковый тип и общее имя.

Матрицы, как и векторы, должны быть в алгоритме описаны служебным словом (например, таб или dim), но в отличие от вектора, матрица имеет описание двух индексов, разделяемых запятыми: первый определяет начальное и конечное значение номеров строк, а второй – столбцов.

Пример. Если матрица x описана в виде dim x(5,3) , то определяется таблицу из 5 строк (от 1-й до 5-й строки) и 3 столбцов (от 1-го до 3-го столбца) вида:

(столбец 1)

(столбец 2)

(столбец 3)

x11

x12

х13

(строка 1)

x21

x22

х23

(строка 2)

х31

х32

х33

(строка 3)

х41

x42

х43

(строка 4)

х51

x52

х53

(строка 5)

Для актуализации элемента двумерного массива нужны два его индекса – номер строки и номер столбца, на пересечении которых стоит этот элемент.

Пример. Элемент х(3,2) – элемент на пересечении 3-й строки и 2-го столбца массива х.