Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по математике- часть 7.docx
Скачиваний:
141
Добавлен:
21.03.2016
Размер:
820.96 Кб
Скачать

Собственные векторы и собственные значения линейного оператора

Вектор Х ≠ 0 называют собственным векторомлинейного оператора с матрицей А, если найдется такое число, что АХ =Х.

При этом число называютсобственным значениемоператора (матрицы А), соответствующим вектору Х.

Иными словами, собственный вектор – это такой вектор, который под действием линейного оператора переходит в коллинеарный вектор, т.е. просто умножается на некоторое число. В отличие от него, несобственные векторы преобразуются более сложно.

Запишем определение собственного вектора в виде системы уравнений:

Перенесем все слагаемые в левую часть:

Последнюю систему можно записать в матричной форме следующим образом:

(А - Е)Х = О

Полученная система всегда имеет нулевое решение Х = О. Такие системы, в которых все свободные члены равны нулю, называют однородными. Если матрица такой системы – квадратная, и ее определитель не равен нулю, то по формулам Крамера мы всегда получим единственное решение – нулевое. Можно доказать, что система имеет ненулевые решения тогда и только тогда, когда определитель этой матрицы равен нулю, т.е.

|А - Е| == 0

Это уравнение с неизвестным называютхарактеристическим уравнением(характеристическим многочленом) матрицы А (линейного оператора).

Можно доказать, что характеристический многочлен линейного оператора не зависит от выбора базиса.

Например, найдем собственные значения и собственные векторы линейного оператора, заданного матрицей А = .

Для этого составим характеристическое уравнение |А - Е| == (1 -)2– 36 = 1 – 2+2- 36 =2– 2- 35 = 0; Д = 4 + 140 = 144; собственные значения1= (2 - 12)/2 = -5;2= (2 + 12)/2 = 7.

Чтобы найти собственные векторы, решаем две системы уравнений

(А + 5Е)Х = О

(А - 7Е)Х = О

Для первой из них расширенная матрица примет вид

,

откуда х2= с, х1 + (2/3)с = 0; х1 = -(2/3)с, т.е. Х(1)= (-(2/3)с; с).

Для второй из них расширенная матрица примет вид

,

откуда х2= с1, х1 - (2/3)с1 = 0; х1 = (2/3)с1, т.е. Х(2)= ((2/3)с1; с1).

Таким образом, собственными векторами этого линейного оператора являются все вектора вида (-(2/3)с; с) с собственным значением (-5) и все вектора вида ((2/3)с1; с1) с собственным значением 7.

Можно доказать, что матрица оператора А в базисе, состоящем из его собственных векторов, является диагональной и имеет вид:

,

где i– собственные значения этой матрицы.

Верно и обратное: если матрица А в некотором базисе является диагональной, то все векторы этого базиса будут собственными векторами этой матрицы.

Также можно доказать, что если линейный оператор имеет n попарно различных собственных значений, то соответствующие им собственные векторы линейно независимы, а матрица этого оператора в соответствующем базисе имеет диагональный вид.

Поясним это на предыдущем примере. Возьмем произвольные ненулевые значения с и с1, но такие, чтобы векторы Х(1)и Х(2)были линейно независимыми, т.е. образовали бы базис. Например, пусть с = с1= 3, тогда Х(1) = (-2; 3), Х(2) = (2; 3). Убедимся в линейной независимости этих векторов:

= -12 ≠ 0. В этом новом базисе матрица А примет вид А*=.

Чтобы убедиться в этом, воспользуемся формулой А*= С-1АС. Вначале найдем С-1.

СТ=;

С-1 =;