
- •1 Типы электростанций и их характеристики
- •2 Структурные схемы получения электроэнергии на тэс кэс Гидроэлектростанции. Гидроэлектростанции
- •3 Короткое замыкание в электроустановках. Метод расчётов токов кз
- •4 Методы ограничения токов кз
- •5 Синхронные генераторы и компенсаторы. Турбогенераторы и Гидрогенераторы
- •Номинальные напряжения синхронных генераторов:
- •6 Трансформаторы и Автотрансформаторы
- •Шкала номинальных мощностей трансформаторов
- •7 Устройства регулирования напряжения на трансформаторах
- •Последовательность переключений устройства рпн
- •8 Условия параллельной работы трансформаторов и синхронных генераторов.
- •Параллельная работа синхронных генераторов
- •9 Конструкции токоведущих частей и шин электроустановок. Жёсткие гибкие и комплектные токопроводы.
- •10 Силовые кабели
- •11. Условия работы проводников и аппаратов при длительном протекании тока
- •12. Термическая стойкость проводников и аппаратов
- •13. Систематические и аварийные перегрузки трансформатора
- •15. Многообъемные и малообъемные масляные выключатели
- •16. Воздушные и элегазовые выключатели
- •Преимущество воздушных выключателей
- •Недостатки воздушных выключателей
- •Преимущества и недостатки элегазовых выключателей[править | править вики-текст] к преимуществам элегазовых выключателей можно отнести
- •К недостаткам элегазовых выключателей можно отнести сложность и дороговизна изготовления - при производстве необходимо соблюдать высокую чистоту и точность;
- •Разновидности вакуумных выключателей
- •18. Разъединители
- •19. Отделители и короткозамытели
- •20. Плавкий предохранитель
- •По рабочим характеристикам защищаемых цепей
- •Недостатки
- •Преимущества[
- •21. Выключатель нагрузки
- •Преимущества[
- •Недостатки
- •22. Приводы выключателей
- •23. Измерительные трансформаторы напряжения
- •Виды трансформаторов напряжения
- •24. Измерительный трансформа́тор то́ка
- •26. Токоограни́чивающий реа́ктор
- •27. Схемы распределительных устройств
- •29. Блочные схемы подстанций
- •30. Мостиковые схемы
- •33. Источники оперативного тока
- •34. Опн и разрядники
6 Трансформаторы и Автотрансформаторы
Силовые трансформаторы предназначены для преобразования электроэнергии одного напряжения на другое. На пути к потребителю электроэнергия многократно трансформируется, поэтому в энергосистеме установленная мощность трансформаторов в 4-5 раз больше установленной мощности генераторов.
Номинальные параметры трансформаторов: мощность Sном; напряжение Uном; ток Iном; напряжение короткого замыкания Uкз; ток холостого хода Iхх; потери холостого хода Pхх; потери короткого замыкания Pкз.
Номинальной мощностью трансформатора называется значение полной мощности с которой может длительно может работать трансформатор при номинальных условиях охлаждения, частоте и напряжении.
В таблице 1.3 приведена шкала номинальных мощностей (кВА) трансформаторов до 6300 кВА включительно.
Таблица 1.3
Шкала номинальных мощностей трансформаторов
10 |
16 |
25 |
40 |
63 |
100 |
160 |
250 |
400 |
630 |
1000 |
1600 |
2500 |
4000 |
6300 |
Напряжение короткого замыкания Uкз – это напряжение при подведении которого к одной из обмоток трансформатора при замкнутой накоротко другой обмотке в ней протекает ток равный номинальному. Uкз характеризует полное сопротивление трансформатора. В справочных данных оно обычно указывается в % от номинального напряжения. Uкз – используется при расчетах токов короткого замыкания.
Потери холостого хода Pхх – это активные потери мощности в стали на перемагничивание и на вихревые токи. В современных трансформаторах с холоднокатанной сталью марки Э330А потери меньше.
Потери короткого замыкания Pкз. – обусловлены потерями активной мощности в обмотках трансформатора при протекании токов нагрузки и добавочными потерями вызванными магнитными полями рассеяния.
Значения Pхх, Pкз используются при расчетах связанных с определением экономичных режимов трансформаторов.
Типы трансформаторов: однофазные и трехфазные.
Наибольшее распространение получили трехфазные трансформаторы. Однофазные трансформаторы применяются при большой мощности и высоких напряжениях (500, 750 кВ), когда возникают затруднения по условиям транспортировки. Технико-экономические показатели трехфазных трансформаторов лучше чем у однофазных. Расход активных материалов у них на 20-25 % меньше чем у группы однофазных трансформаторов такой же мощности.
По количеству обмоток различают двухобмоточные и трехобмоточные. В трехобмоточных трансформаторах мощность обмотки низкого или среднего напряжения может быть меньше номинальной (например 67 %). Сумма нагрузок обмоток низкого и высокого напряжения при этом не должна превышать номинальной.
Трансформаторы с расщепленной обмоткой являются разновидностью трехобмоточных трансформаторов. Обмотка низкого напряжения может выполняться из двух или более изолированных ветвей. Мощность каждой из расщепленных обмоток определяется выражением:
,
где n – количество расщепленных ветвей.
Рис. 1.17. Схема замещения трансформатора с расщепленной обмоткой
Конструктивные особенности и характеристики трансформаторов с расщепленной обмоткой.
Достоинством трансформаторов с расщепленной обмоткой является большое сопротивление ветвей, что позволяет уменьшить токи короткого замыкания в РУ низкого напряжения подстанций.
В
справочниках для трансформаторов с
расщепленной обмоткой Uкз
обычно задано между обмоткой высокого
напряжения и параллельно соединенными
обмотками низкого напряжения ().
ЗначенияUкз
находятся при этом в диапазоне 10-12 %
и для отдельных обмоток могут быть
определены по выражениям:
;
,
где
Kр
– коэффициент расщепления, принимается
равным
– для трехфазных трансформаторов;
– для группы из трех однофазных
трансформаторов.
При
расчете токов короткого замыкания на
стороне низкого напряжения трансформатора
(при раздельной работе обмоток низкого
напряжения) можно принимать:
.
В случае если для трансформатора с расщепленной обмоткой значение Uк.т, приведенное в справочнике, превышает 20 %, то применять коэффициент 2 не следует, т.к. справочные данные приведены для раздельной работы обмоток низкого напряжения трансформатора.
Автотрансформаторы
Автотрансформатор представляет собой многообмоточный трансформатор у которого две обмотки связаны электрически.
Рис. 1.18. Схема однофазного трехобмоточного автотрансформатора
Полная мощность передаваемая из первичной стороны автотрансформатора в во вторичную называется проходной. Проходная мощность в номинальном режиме называется номинальной Sном.
Мощность
передаваемая электромагнитным полем
называется трансформаторной:
.
Трансформаторная мощность в номинальном
режиме называется типовойSтип.
Мощность
передаваемая из первичной обмотки во
вторичную за счет электрической связи
называется электрической:
.
Размеры автотрансформатора определяются в основном магнитопроводом, а, следовательно, типовой мощностью.
Коэффициент типовой мощности:
.
Номинальная мощность обмотки низкого напряжения (электрически не связанной) автотрансформатора всегда меньше (или равна) типовой мощности Sтип.