
- •1 Типы электростанций и их характеристики
- •2 Структурные схемы получения электроэнергии на тэс кэс Гидроэлектростанции. Гидроэлектростанции
- •3 Короткое замыкание в электроустановках. Метод расчётов токов кз
- •4 Методы ограничения токов кз
- •5 Синхронные генераторы и компенсаторы. Турбогенераторы и Гидрогенераторы
- •Номинальные напряжения синхронных генераторов:
- •6 Трансформаторы и Автотрансформаторы
- •Шкала номинальных мощностей трансформаторов
- •7 Устройства регулирования напряжения на трансформаторах
- •Последовательность переключений устройства рпн
- •8 Условия параллельной работы трансформаторов и синхронных генераторов.
- •Параллельная работа синхронных генераторов
- •9 Конструкции токоведущих частей и шин электроустановок. Жёсткие гибкие и комплектные токопроводы.
- •10 Силовые кабели
- •11. Условия работы проводников и аппаратов при длительном протекании тока
- •12. Термическая стойкость проводников и аппаратов
- •13. Систематические и аварийные перегрузки трансформатора
- •15. Многообъемные и малообъемные масляные выключатели
- •16. Воздушные и элегазовые выключатели
- •Преимущество воздушных выключателей
- •Недостатки воздушных выключателей
- •Преимущества и недостатки элегазовых выключателей[править | править вики-текст] к преимуществам элегазовых выключателей можно отнести
- •К недостаткам элегазовых выключателей можно отнести сложность и дороговизна изготовления - при производстве необходимо соблюдать высокую чистоту и точность;
- •Разновидности вакуумных выключателей
- •18. Разъединители
- •19. Отделители и короткозамытели
- •20. Плавкий предохранитель
- •По рабочим характеристикам защищаемых цепей
- •Недостатки
- •Преимущества[
- •21. Выключатель нагрузки
- •Преимущества[
- •Недостатки
- •22. Приводы выключателей
- •23. Измерительные трансформаторы напряжения
- •Виды трансформаторов напряжения
- •24. Измерительный трансформа́тор то́ка
- •26. Токоограни́чивающий реа́ктор
- •27. Схемы распределительных устройств
- •29. Блочные схемы подстанций
- •30. Мостиковые схемы
- •33. Источники оперативного тока
- •34. Опн и разрядники
2 Структурные схемы получения электроэнергии на тэс кэс Гидроэлектростанции. Гидроэлектростанции
1-генератор 2-турбина 3-повышающий трансформатор 4-РУ высокого напряжения
H1-запас воды в хранилище H2-уровень расходной части станции
УВБ-уровень высшего бьефа УНБ-уровень низшего бьефа
Разница м/у этими уровнями определяет производительность станции УВБ-УНБ=Н. Тогда мощность ГЭС будет являться функцией: P=f(H,Q), где Q-расход воды. По технологии данные станции служат для покрытия пиковых нагрузок.
Рис. 1.1. Технологическая схема конденсационной электростанции
1 – парогенератор; 2 – пароперегреватель; 3 – ступень турбины высокого давления; 4 – ступень турбины низкого давления; 5 – промежуточный перегреватель;6 – конденсатор; 7 – конденсатный насос; 8 – питательный насос; 9 – генератор; 10 – повышающий трансформатор
ТЭС с паротурбинной установкой (ПТУ)
ТЭС работают в основном, на угольной пыли или природном газе. В последнем случае, резервным топливом является мазут. Отсюда определения: пылеугольная ТЭС, газомазутная ТЭС.
На ТЭС топливо подаётся в котёл, где, сгорая, оно нагревает воду (называемую питательной водой), также подаваемую в котёл, до состояния пара. Далее водяной пар вырывается из котла, идёт по паропроводу к турбине, Далее пар поступает на паровую турбину и вращает её.
Для лучшего сгорания воздуха в котёл нагнетается воздух с помощью вентиляторов. Для удаления из топки продуктов сгорания дымовые газы откачиваются дымососами и после очистки через дымовую трубу выбрасываются в атмосферу. Именно это считается основным фактором загрязнения атмосферы и выбросов парниковых газов. Многое, естественно, зависит от качества очистки.
Наиболее опасны и, при этом, трудно улавливаемые компоненты выбросов ТЭС – оксиды серы и азота. Именно это, а не углекислый газ, представляет наибольшую угрозу окружающей среде и человеку.
Осталось рассказать, откуда вода в котле. Если на ТЭС производится только электроэнергия, т.е. мы говорим о КЭС – конденсационной электростанции, то используется замкнутый оборот воды. В котёл поступает вода, которая ранее в виде пара вышла из турбины.
Для этого пар необходимо охладить. Это делается в конденсаторе, представляющем собой большой резервуар, в котором движутся две разделённые перегородкой среды: пар и внешняя холодная вода. Холодная, или техническая, вода берётся из реки, пруда-охладителя либо градирни (установки для охлаждения воды). С её помощью пар охлаждается и возвращается в состояние воды, после чего вновь поступает в котёл, и цикл замыкается.
Иначе работает ТЭЦ (теплоэлектроцентраль), дающая, кроме электричества, также тепло. Это требует добавления в цикл ещё одного звена – отбора пара из турбины и нагрев им сетевой воды, которую с помощью насосов подают в дома, в батареи центрального отопления.
ТЭС с газотурбинной установкой (ГТУ)Типичный пример ГТУ – авиационный двигатель, где керосин при сгорании создаёт горячие выхлопные газы, раскручивающие турбину. Преимущество ТЭС с ГТУ в том, что они не требуют питательной воды и, как следствие, целого комплекса сопутствующих устройств. Недостаток – в том, что отсутствует замкнутый цикл теплоносителя, и отработавшие газы выбрасываются в атмосферу. Тем не менее, благодаря компактности, простоты в монтаже и обслуживании число ГТУ растёт.
ТЭС с парогазовой установкой (ПГУ)ТЭС с ПГУ отличается тем, что выхлопные газы сбрасываются в котёл цикла ПТУ, в этом случае называемый котлом – утилизатором. Далее горячие газы подогревают воду до состояния пара. Это, по сути, совмещение двух циклов: ПТУ + ГТУ = ПГУ.